Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = shallow-water seismic survey vessel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6518 KiB  
Article
Research on Hull Form Design and Numerical Simulation of Sinkage and Trim for a New Shallow-Water Seismic Survey Vessel
by Ziyi Ye, Shaojuan Su, Yujie Wu, Fangxin Guo, Haibo Liu and Qixiang Cheng
J. Mar. Sci. Eng. 2024, 12(7), 1205; https://doi.org/10.3390/jmse12071205 - 18 Jul 2024
Cited by 1 | Viewed by 1378
Abstract
When a ship sails in shallow water, it will show different hydrodynamic performance from that in deep water due to the limitations of water depth. The shallow water effect may lead to hull sinkage and trim, increasing the risk of bottoming or collision. [...] Read more.
When a ship sails in shallow water, it will show different hydrodynamic performance from that in deep water due to the limitations of water depth. The shallow water effect may lead to hull sinkage and trim, increasing the risk of bottoming or collision. In this study, a new design scheme of a shallow-water seismic survey vessel is proposed to solve the problems of traditional seismic survey vessels in shallow-water marine resources exploration and safety. The RANS (the Reynolds-Averaged Navier–Stokes) method combined with the Overset Mesh and DFBI (Dynamic Fluid Body Interaction) method is used for numerical simulation to analyze the influence of ship type, water depth, and speed on ship sinkage and trim, as well as the influence of the shallow-water ship’s attitude on resistance. The results show that with the decrease in water depth and the increase in speed, the pressure distribution around the hull becomes uneven, which leads to the aggravation of the sinkage and trim of the hull. In response to this problem, the shallow-water seismic survey vessel significantly improved the sinkage and trim of the hull in shallow water to ensure its safe navigation. The research also shows that navigation resistance can be effectively reduced by appropriately adjusting the ship’s attitude. Therefore, this study provides a reference for the development of shallow-water ships in the future. Full article
(This article belongs to the Special Issue CFD Applications in Ship and Offshore Hydrodynamics)
Show Figures

Figure 1

26 pages, 15374 KiB  
Project Report
Mesophotic Hardground Revealed by Multidisciplinary Cruise on the Brazilian Equatorial Margin
by Luigi Jovane, Allana Q. Azevedo, Eduardo H. Marcon, Fernando Collo Correa e Castro, Halesio Milton C. de Barros Neto, Guarani de Hollanda Cavalcanti, Fabíola A. Lima, Linda G. Waters, Camila F. da Silva, André C. Souza, Lucy Gomes Sant’Anna, Thayse Sant’Ana Fonseca, Luis Silva, Marco A. de C. Merschmann, Gilberto P. Dias, Prabodha Das, Celio Roberto Jonck, Rebeca G. M. Lizárraga, Diana C. de Freitas, Maria R. dos Santos, Kerly A. Jardim, Izabela C. Laurentino, Kyssia K. C. Sousa, Marilia C. Pereira, Yasmim da S. Alencar, Nathalia M. L. Costa, Tobias Rafael M. Coelho, Kevin L. C. Ferrer do Carmo, Rebeca C. Melo, Iara Gadioli Santos, Lucas G. Martins, Sabrina P. Ramos, Márcio R. S. dos Santos, Matheus M. de Almeida, Vivian Helena Pellizari and Paulo Y. G. Sumidaadd Show full author list remove Hide full author list
Minerals 2024, 14(7), 702; https://doi.org/10.3390/min14070702 - 10 Jul 2024
Viewed by 1983
Abstract
The Amapá margin, part of the Brazilian Equatorial Margin (BEM), is a key region that plays a strategic role in the global climate balance between the North and South Atlantic Ocean as it is strictly tied to equatorial heat conveyance and the fresh/salt [...] Read more.
The Amapá margin, part of the Brazilian Equatorial Margin (BEM), is a key region that plays a strategic role in the global climate balance between the North and South Atlantic Ocean as it is strictly tied to equatorial heat conveyance and the fresh/salt water equilibrium with the Amazon River. We performed a new scientific expedition on the Amapá continental shelf (ACS, northern part of the Amazon continental platform) collecting sediment and using instrumental observation at an unstudied site. We show here the preliminary outcomes following the applied methodologies for investigation. Geophysical, geological, and biological surveys were carried out within the ACS to (1) perform bathymetric and sonographic mapping, high-resolution sub-surface geophysical characterization of the deep environment of the margin of the continental platform, (2) characterize the habitats and benthic communities through underwater images and biological sampling, (3) collect benthic organisms for ecological and taxonomic studies, (4) define the mineralogical and (5) elemental components of sediments from the study region, and (6) identify their provenance. The geophysical data collection included the use of bathymetry, a sub-bottom profiler, side scan sonar, bathythermograph acquisition, moving vessel profiler, and a thermosalinograph. The geological data were obtained through mineralogical, elemental, and grain size analysis. The biological investigation involved epifauna/infauna characterization, microbial analysis, and eDNA analysis. The preliminary results of the geophysical mapping, shallow seismic, and ultrasonographic surveys endorsed the identification of a hard substrate in a mesophotic environment. The preliminary geological data allowed the identification of amphibole, feldspar, biotite, as well as other minerals (e.g., calcite, quartz, goethite, ilmenite) present in the substrata of the Amapá continental shelf. Silicon, iron, calcium, and aluminum composes ~85% of sediments from the ACS. Sand and clay are the main fraction from these sediments. Within the sediments, Polychaeta (Annelida) dominated, followed by Crustacea (Arthropoda), and Ophiuroidea (Echinodermata). Through TowCam videos, 35 taxons with diverse epifauna were recorded, including polychaetes, hydroids, algae, gastropods, anemones, cephalopods, crustaceans, fishes, and sea stars. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Figure 1

15 pages, 5726 KiB  
Article
Morphotectonic Structures along the Southwestern Margin of Lesvos Island, and Their Interrelation with the Southern Strand of the North Anatolian Fault, Aegean Sea, Greece
by Paraskevi Nomikou, Dimitris Evangelidis, Dimitrios Papanikolaou, Danai Lampridou, Dimitris Litsas, Yannis Tsaparas, Ilias Koliopanos and Maria Petroulia
GeoHazards 2021, 2(4), 415-429; https://doi.org/10.3390/geohazards2040023 - 14 Dec 2021
Cited by 3 | Viewed by 4345
Abstract
A hydrographic survey of the southwestern coastal margin of Lesvos Island (Greece) was conducted by the Naftilos vessel of the Hellenic Hydrographic Service. The results have been included in a bathymetric map and morphological slope map of the area. Based on the neotectonic [...] Read more.
A hydrographic survey of the southwestern coastal margin of Lesvos Island (Greece) was conducted by the Naftilos vessel of the Hellenic Hydrographic Service. The results have been included in a bathymetric map and morphological slope map of the area. Based on the neotectonic and seismotectonic data of the broader area, a morphotectonic map of Lesvos Island has been compiled. The main feature is the basin sub-parallel to the coast elongated Lesvos Basin, 45 km long, 10–35 km wide, and 700 m deep. The northern margin of the basin is abrupt, with morphological slopes towards the south between 35° and 45° corresponding to a WNW-ESE normal fault, in contrast with the southern margin that shows a gradual slope increase from 1° to 5° towards the north. Thus, the main Lesvos Basin represents a half-graben structure. The geometry of the main basin is interrupted at its eastern segment by an oblique NW-SE narrow channel of 650 m depth and 8 km length. East of the channel, the main basin continues as a shallow Eastern Basin. At the western part of the Lesvos margin, the shallow Western Basin forms an asymmetric tectonic graben. Thus, the Lesvos southern margin is segmented in three basins with different morphotectonic characteristics. At the northwestern margin of Lesvos, three shallow basins of 300–400 m depth are observed with WNW-ESE trending high slope margins, probably controlled by normal faults. Shallow water marine terraces representing the last low stands of the glacial periods are observed at 140 m and 200 m depth at the two edges of the Lesvos margin. A secondary E-W fault disrupts the two terraces at the eastern part of the southern Lesvos margin. The NE-SW strike-slip fault zone of Kalloni-Aghia Paraskevi, activated in 1867, borders the west of the Lesvos Basin from the shallow Western Basin. The Lesvos bathymetric data were combined with those of the eastern Skyros Basin, representing the southern strand of the North Anatolian Fault in the North Aegean Sea, and the resulted tectonic map indicates that the three Lesvos western basins are pull-aparts of the strike-slip fault zone between the Skyros Fault and the Adramytion (Edremit) Fault. The seismic activity since 2017 has shown the co-existence of normal faulting and strike-slip faulting throughout the 90 km long Lesvos southern margin. Full article
Show Figures

Figure 1

Back to TopTop