Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = semi-aromatic polyesters

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 3179 KiB  
Article
One-Pot Terpolymerization of Macrolactones with Limonene Oxide and Phtalic Anhydride to Produce di-Block Semi-Aromatic Polyesters
by Ilaria D’Auria, Sara D’Aniello, Gianluca Viscusi, Elena Lamberti, Giuliana Gorrasi, Mina Mazzeo and Daniela Pappalardo
Polymers 2022, 14(22), 4911; https://doi.org/10.3390/polym14224911 - 14 Nov 2022
Cited by 5 | Viewed by 2791
Abstract
The synthesis of novel block copolymers, namely poly(limonene-phthalate)-block-poly(pentadecalactone) and poly(limonene-phthalate)-block-poly(pentadecalactone) is here described. To achieve this synthesis, a bimetallic aluminum based complex (1) was used as catalyst in the combination of two distinct processes: the ring-opening polymerization [...] Read more.
The synthesis of novel block copolymers, namely poly(limonene-phthalate)-block-poly(pentadecalactone) and poly(limonene-phthalate)-block-poly(pentadecalactone) is here described. To achieve this synthesis, a bimetallic aluminum based complex (1) was used as catalyst in the combination of two distinct processes: the ring-opening polymerization (ROP) of macrolactones such as ω-pentadecalactone (PDL) and ω-6-hexadecenlactone (HDL) and the ring-opening copolymerization (ROCOP) of limonene oxide (LO) and phthalic anhydride (PA). The synthesis of di-block polyesters was performed in a one-pot procedure, where the semi-aromatic polyester block was firstly formed by ROCOP of LO and PA, followed by the polyethylene like portion produced by ROP of macrolactones (PDL or HDL). The obtained di-block semiaromatic polyesters were characterized by NMR and GPC. The structural organization was analyzed through XRD. Thermal properties were evaluated using differential thermal analysis (DSC) and thermogravimetric measurements (TGA) either in air or in nitrogen atmosphere. Full article
(This article belongs to the Collection Plastics Technology and Engineering)
Show Figures

Figure 1

17 pages, 4116 KiB  
Article
Ferulic Acid as Building Block for the Lipase-Catalyzed Synthesis of Biobased Aromatic Polyesters
by Alfred Bazin, Luc Avérous and Eric Pollet
Polymers 2021, 13(21), 3693; https://doi.org/10.3390/polym13213693 - 27 Oct 2021
Cited by 12 | Viewed by 3251
Abstract
Enzymatic synthesis of aromatic biobased polyesters is a recent and rapidly expanding research field. However, the direct lipase-catalyzed synthesis of polyesters from ferulic acid has not yet been reported. In this work, various ferulic-based monomers were considered for their capability to undergo CALB-catalyzed [...] Read more.
Enzymatic synthesis of aromatic biobased polyesters is a recent and rapidly expanding research field. However, the direct lipase-catalyzed synthesis of polyesters from ferulic acid has not yet been reported. In this work, various ferulic-based monomers were considered for their capability to undergo CALB-catalyzed polymerization. After conversion into diesters of different lengths, the CALB-catalyzed polymerization of these monomers with 1,4-butanediol resulted in short oligomers with a DPn up to 5. Hydrogenation of the double bond resulted in monomers allowing obtaining polyesters of higher molar masses with DPn up to 58 and Mw up to 33,100 g·mol−1. These polyesters presented good thermal resistance up to 350 °C and Tg up to 7 °C. Reduction of the ferulic-based diesters into diols allowed preserving the double bond and synthesizing polyesters with a DPn up to 19 and Mw up to 15,500 g·mol−1 and higher Tg (up to 21 °C). Thus, this study has shown that the monomer hydrogenation strategy proved to be the most promising route to achieve ferulic-based polyester chains of high DPn. This study also demonstrates for the first time that ferulic-based diols allow the synthesis of high Tg polyesters. Therefore, this is an important first step toward the synthesis of competitive biobased aromatic polyesters by enzymatic catalysis. Full article
(This article belongs to the Special Issue Green Chemistry in Polymer Science and Sustainable Polymers)
Show Figures

Graphical abstract

8 pages, 1054 KiB  
Article
Synthesis of High Molecular Weight Polyester Using in Situ Drying Method and Assessment of Water Vapor and Oxygen Barrier Properties
by Shouyun Cheng, Burhan Khan, Fahad Khan and Muhammad Rabnawaz
Polymers 2018, 10(10), 1113; https://doi.org/10.3390/polym10101113 - 9 Oct 2018
Cited by 9 | Viewed by 4161
Abstract
The preparation of renewable polyesters with good barrier properties is highly desirable for the packaging industry. Herein we report the synthesis of high molecular weight polyesters via an innovative use of an in situ drying agent approach and the barrier properties of the [...] Read more.
The preparation of renewable polyesters with good barrier properties is highly desirable for the packaging industry. Herein we report the synthesis of high molecular weight polyesters via an innovative use of an in situ drying agent approach and the barrier properties of the films formed from these polyesters. High number average molecular weight (Mn) semiaromatic polyesters (PEs) were synthesized via alternating ring-opening copolymerization (ROCOP) of phthalic anhydride (PA) and cyclohexene oxide (CHO) using a salen chromium(III) complex in the presence of 4-(dimethylamino)pyridine (DMAP) cocatalyst. The use of a calcium hydride (drying agent) was found to enhance the number Mn of the synthesized PEs, which reached up to 31.2 ku. To test the barrier properties, PE films were prepared by solvent casting approach and their barrier properties were tested in comparison poly(lactic acid) films. The PE films showed significantly improved water vapor and oxygen barrier properties compared to the commercial poly(lactic acid) (PLA) film that suggests the potential use of these PEs in in the food packaging industry. Full article
(This article belongs to the Special Issue Biodegradable and Biobased Polyesters)
Show Figures

Graphical abstract

31 pages, 7351 KiB  
Review
Development of Solution-Processable, Optically Transparent Polyimides with Ultra-Low Linear Coefficients of Thermal Expansion
by Masatoshi Hasegawa
Polymers 2017, 9(10), 520; https://doi.org/10.3390/polym9100520 - 18 Oct 2017
Cited by 156 | Viewed by 19641
Abstract
This paper reviews the development of new high-temperature polymeric materials applicable to plastic substrates in image display devices with a focus on our previous results. Novel solution-processable colorless polyimides (PIs) with ultra-low linear coefficients of thermal expansion (CTE) are proposed in this paper. [...] Read more.
This paper reviews the development of new high-temperature polymeric materials applicable to plastic substrates in image display devices with a focus on our previous results. Novel solution-processable colorless polyimides (PIs) with ultra-low linear coefficients of thermal expansion (CTE) are proposed in this paper. First, the principles of the coloration of PI films are briefly discussed, including the influence of the processing conditions on the film coloration, as well as the chemical and physical factors dominating the low CTE characteristics of the resultant PI films to clarify the challenges in simultaneously achieving excellent optical transparency, a very high Tg, a very low CTE, and excellent film toughness. A possible approach of achieving these target properties is to use semi-cycloaliphatic PI systems consisting of linear chain structures. However, semi-cycloaliphatic PIs obtained using cycloaliphatic diamines suffer various problems during precursor polymerization, cyclodehydration (imidization), and film preparation. In particular, when using trans-1,4-cyclohexanediamine (t-CHDA) as the cycloaliphatic diamine, a serious problem emerges: salt formation in the initial stages of the precursor polymerization, which terminates the polymerization in some cases or significantly extends the reaction period. The system derived from 3,3′,4,4′-biphenyltetracarboxylic dianhydride (s-BPDA) and t-CHDA can be polymerized by a controlled heating method and leads to a PI film with relatively good properties, i.e., excellent light transmittance at 400 nm (T400 = ~80%), a high Tg (>300 °C), and a very low CTE (10 ppm·K−1). However, this PI film is somewhat brittle (the maximum elongation at break, εb max is about 10%). On the other hand, the combination of cycloaliphatic tetracarboxylic dianhydrides and aromatic diamines does not result in salt formation. The steric structures of cycloaliphatic tetracarboxylic dianhydrides significantly influence the polymerizability with aromatic diamines and the CTE values of the resultant PI films. For three isomers of hydrogenated pyromellitic dianhydride, the steric structure effect on the polymerizability and the properties of the PI films is discussed. 1,2,3,4-Cyclobutanetetracarboxylic dianhydride (CBDA) is a very unusual cycloaliphatic tetracarboxylic dianhydride that is suitable for reducing the CTE. For example, the PI system derived from CBDA and 2,2′-bis(trifluoromethyl)benzidine (TFMB) yields a colorless PI film with a relatively low CTE (21 ppm·K−1). However, this PI is insoluble in common organic solvents, which means that it is neither solution-processable nor compatible with the chemical imidization process; furthermore, the film is somewhat brittle (εb < 10%). In addition, the effect of the film preparation route on the film properties is shown to be significant. Films prepared via chemical imidization always have higher optical transparency and lower CTE values than those prepared via the conventional two-step process (i.e., precursor casting and successive thermal imidization). These results suggest that compatibility with the chemical imidization process is the key for achieving our goal. To dramatically improve the solubility in the CBDA-based PI systems, a novel amide-containing aromatic diamine (AB-TFMB), which possesses the structural features of TFMB and 4,4′-diaminobenzanilide (DABA), is proposed. The CBDA(70);6FDA(30)/AB-TFMB copolymer has an ultra-low CTE (7.3 ppm·K−1), excellent optical transparency (T400 = 80.6%, yellowness index (YI) = 2.5, and haze = 1.5%), a very high Tg (329 °C), sufficient ductility (εb max > 30%), and good solution-processability. Therefore, this copolymer is a promising candidate for use as a novel coating-type plastic substrate material. This paper also discusses how the target properties can be achieved without the help of cycloaliphatic monomers. Thus, elaborate molecular design allows the preparation of highly transparent and low-CTE aromatic poly(amide imide) and poly(ester imide) systems. Full article
(This article belongs to the Special Issue High Performance Polymers)
Show Figures

Figure 1

Back to TopTop