Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = semi transparent antenna

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 5833 KB  
Article
Multilayer Smart Holographic Label with Integrated RFID for Product Security and Monitoring
by Cătălin Pârvulescu, Veronica Anăstăsoaie, Roxana Tomescu, Martino Aldrigo and Dana Cristea
Micromachines 2023, 14(3), 692; https://doi.org/10.3390/mi14030692 - 21 Mar 2023
Cited by 7 | Viewed by 3880
Abstract
Counterfeiting presents a major economic problem and an important risk for the public health and safety of individuals and countries. To make the counterfeiting process more difficult, and to ensure efficient authentication, a solution would be to attach anti-counterfeit labels that include a [...] Read more.
Counterfeiting presents a major economic problem and an important risk for the public health and safety of individuals and countries. To make the counterfeiting process more difficult, and to ensure efficient authentication, a solution would be to attach anti-counterfeit labels that include a radio frequency identification (RFID) element to the products. This can allow real-time quality check along the entire supply chain. In this paper we present the technology optimized to obtain a multilayer holographic label with a high degree of security, patterned on a thin zinc sulfide film of a semi-transparent holographic foil rather than on the standard substrate for diffractive optical elements (metallized foil). The label is applied onto the product surface or packaging for anti-counterfeit protection. The developed multilayer structure contains various elements such as: a holographic background, nanotext-type elements, holographic elements, and an RFID antenna. The employed semi-transparent holographic foil offers the RFID antenna the possibility to transmit the electromagnetic signal through the label and thus to maximize the antenna footprint, achieving up to 10 m reading distance, with a 6 cm × 6 cm label, much smaller than the commercial standard (minimum 10 cm × 10 cm). Full article
(This article belongs to the Special Issue Novel Developments in Waveguides and Antennas)
Show Figures

Figure 1

22 pages, 3649 KB  
Review
Optically Transparent Antennas: A Review of the State-of-the-Art, Innovative Solutions and Future Trends
by Abdul Rehman Chishti, Abdul Aziz, Muhammad Ali Qureshi, Muhammad Nawaz Abbasi, Abdullah M. Algarni, Azzedine Zerguine, Niamat Hussain and Rifaqat Hussain
Appl. Sci. 2023, 13(1), 210; https://doi.org/10.3390/app13010210 - 24 Dec 2022
Cited by 40 | Viewed by 11551
Abstract
The requirement of mounting several access points and base stations is increasing tremendously due to recent advancements and the need for high-data-rate communication services of 5G and 6G wireless communication systems. In the near future, the enormous number of these access points might [...] Read more.
The requirement of mounting several access points and base stations is increasing tremendously due to recent advancements and the need for high-data-rate communication services of 5G and 6G wireless communication systems. In the near future, the enormous number of these access points might cause a mess. In such cases, an optically transparent antenna (OTA) is the best option for making the environment more appealing and pleasant. OTAs provide the possible solution as these maintain the device aesthetics to achieve transparency as well as fulfill the basic coverage and bandwidth requirements. Various attempts have been made to design OTAs to provide coverage for wireless communication, particularly for the dead zones. These antennas can be installed on building windows, car windscreens, towers, trees, and smart windows, which enables network access for vehicles and people passing by those locations. Several transparent materials and techniques are used for transparent antenna design. Thin-film and mesh-grid techniques are very popular to transform metallic parts of the antenna into a transparent material. In this article, a comprehensive review of both the techniques used for the design of OTAs is presented. The performance comparison of OTAs on the basis of bandwidth, gain, transparency, transmittance, and efficiency is also presented. An OTA is the best choice in these situations to improve the aesthetics and comfort of the surroundings with high antenna performance. Full article
Show Figures

Figure 1

30 pages, 30367 KB  
Review
Modern Types of Axicons: New Functions and Applications
by Svetlana N. Khonina, Nikolay L. Kazanskiy, Pavel A. Khorin and Muhammad A. Butt
Sensors 2021, 21(19), 6690; https://doi.org/10.3390/s21196690 - 8 Oct 2021
Cited by 98 | Viewed by 16866
Abstract
Axicon is a versatile optical element for forming a zero-order Bessel beam, including high-power laser radiation schemes. Nevertheless, it has drawbacks such as the produced beam’s parameters being dependent on a particular element, the output beam’s intensity distribution being dependent on the quality [...] Read more.
Axicon is a versatile optical element for forming a zero-order Bessel beam, including high-power laser radiation schemes. Nevertheless, it has drawbacks such as the produced beam’s parameters being dependent on a particular element, the output beam’s intensity distribution being dependent on the quality of element manufacturing, and uneven axial intensity distribution. To address these issues, extensive research has been undertaken to develop nondiffracting beams using a variety of advanced techniques. We looked at four different and special approaches for creating nondiffracting beams in this article. Diffractive axicons, meta-axicons-flat optics, spatial light modulators, and photonic integrated circuit-based axicons are among these approaches. Lately, there has been noteworthy curiosity in reducing the thickness and weight of axicons by exploiting diffraction. Meta-axicons, which are ultrathin flat optical elements made up of metasurfaces built up of arrays of subwavelength optical antennas, are one way to address such needs. In addition, when compared to their traditional refractive and diffractive equivalents, meta-axicons have a number of distinguishing advantages, including aberration correction, active tunability, and semi-transparency. This paper is not intended to be a critique of any method. We have outlined the most recent advancements in this field and let readers determine which approach best meets their needs based on the ease of fabrication and utilization. Moreover, one section is devoted to applications of axicons utilized as sensors of optical properties of devices and elements as well as singular beams states and wavefront features. Full article
(This article belongs to the Special Issue Recent Developments of Integrated Photonic Sensors)
Show Figures

Figure 1

Back to TopTop