Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = seed miss prevention system (SMPS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 15294 KiB  
Article
Application of Seed Miss Prevention System for a Spoon-Wheel Type Precision Seed Metering Device: Effectiveness and Limitations
by Aldiyar Bakirov, Nikolay Kostyuchenkov, Oksana Kostyuchenkova, Alexsandr Grishin, Aruzhan Omarbekova and Nikolay Zagainov
Agriculture 2025, 15(13), 1363; https://doi.org/10.3390/agriculture15131363 - 25 Jun 2025
Viewed by 292
Abstract
Precision seeding plays a critical role in optimizing crop yield and resource efficiency. This study evaluates the application of a Seed Miss Prevention System (SMPS) integrated with a spoon-wheel precision metering device to mitigate seed misses and enhance its performance. A combination of [...] Read more.
Precision seeding plays a critical role in optimizing crop yield and resource efficiency. This study evaluates the application of a Seed Miss Prevention System (SMPS) integrated with a spoon-wheel precision metering device to mitigate seed misses and enhance its performance. A combination of Discrete Element Method (DEM) simulations, electrical hardware design, mechanical retrofitting, software development and laboratory experiments was employed to assess the effectiveness of the system across multiple seed cultivars and operating speeds. Experimental results demonstrated that the SMPS significantly reduced seed misses at lower operational speeds (3–10 rpm), with the implementation of a dual-sensor configuration further improving detection accuracy by filtering out false positives. At higher speeds (≥15 rpm), however, seed miss rates increased, particularly for irregularly shaped seeds like white beans ‘Great Northern’, due to the mechanical limitations of the metering device. Statistical analyses, including Tukey’s HSD test, confirmed the effectiveness of the SMPS in reducing miss rates across different seed types. Despite these improvements, complete elimination of seed misses was not achieved, highlighting the need for further optimization in seed miss detection. Future research should explore adaptations for higher-speed metering devices and field-scale validations. The findings underscore the potential of SMPS technology in advancing precision agriculture by improving seeding accuracy and operational efficiency. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

Back to TopTop