Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = sedanenolide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
58 pages, 16158 KB  
Article
Lomatium Species of the Intermountain Western United States: A Chemotaxonomic Investigation Based on Essential Oil Compositions
by William N. Setzer, Ambika Poudel, Prabodh Satyal, Kathy Swor and Clinton C. Shock
Plants 2025, 14(2), 186; https://doi.org/10.3390/plants14020186 - 11 Jan 2025
Viewed by 1111
Abstract
Lomatium is a genus of 98 species, widely distributed in western North America. This work presents a chemometric analysis of the essential oils of seven species of Lomatium (L. anomalum, L. dissectum var. dissectum, L. multifidum, L. nudicaule, [...] Read more.
Lomatium is a genus of 98 species, widely distributed in western North America. This work presents a chemometric analysis of the essential oils of seven species of Lomatium (L. anomalum, L. dissectum var. dissectum, L. multifidum, L. nudicaule, L. packardiae, L. papilioniferum, and L. triternatum var. triternatum) from the intermountain western United States (Oregon and Idaho). The essential oils were obtained by hydrodistillation and analyzed by gas chromatographic methods. Lomatium packardiae essential oil can be characterized as limonene-rich, L. anomalum is a species rich in sabinene and α-pinene, and L. multifidum essential oils were rich in myrcene, while L. dissectum var. dissectum essential oils were dominated by octyl acetate and decyl acetate, L. papilioniferum essential oils from western Idaho had high p-cymene and 2-methyl-5-(1,2,2-trimethylcyclopentyl)phenol concentrations, while those from Oregon had relatively high β-phellandrene and sedanenolide levels. The essential oils of L. triternatum var. triternatum were too variable to confidently assign a chemical type. The major components in the L. nudicaule essential oils were β-phellandrene (16.0–45.7%), (Z)-ligustilide (5.6–47.1%), (E)-β-ocimene (3.3–9.9%), and δ-3-carene (0.2–12.6%). The enantiomeric distributions of α-pinene, camphene, sabinene, β-pinene, limonene, and linalool were also utilized to discriminate between the Lomatium taxa. There are not enough consistent data to properly characterize L. triternatum var. triternatum or the Oregon L. papilioniferum essential oils. Additional research is needed to confidently describe the chemotype(s) of these species. Full article
(This article belongs to the Special Issue Phytochemistry of Aromatic and Medicinal Plants)
Show Figures

Figure 1

17 pages, 1270 KB  
Article
Exploring Common Culinary Herbs and Spices as Potential Anti-Quorum Sensing Agents
by Sekelwa Cosa, Sushil Kumar Chaudhary, Weiyang Chen, Sandra Combrinck and Alvaro Viljoen
Nutrients 2019, 11(4), 739; https://doi.org/10.3390/nu11040739 - 29 Mar 2019
Cited by 25 | Viewed by 5298
Abstract
Quorum sensing controls bacterial pathogenesis and virulence; hence, interrupting this system renders pathogenic bacteria non-virulent, and presents a novel treatment for various bacterial infections. In the search for novel anti-quorum sensing (AQS) compounds, 14 common culinary herbs and spices were screened for potential [...] Read more.
Quorum sensing controls bacterial pathogenesis and virulence; hence, interrupting this system renders pathogenic bacteria non-virulent, and presents a novel treatment for various bacterial infections. In the search for novel anti-quorum sensing (AQS) compounds, 14 common culinary herbs and spices were screened for potential antipathogenicity activity against Chromobacterium violaceum ATCC 12472. Extracts of Glycyrrhiza glabra (liquorice), Apium graveolens (celery), Capsicum annuum (cayenne pepper) and Syzygium anisatum (aniseed) demonstrated good AQS potential, yielding opaque halo zones ranging from 12–19 mm diameter at sub-minimum inhibitory concentrations (0.350–4.00 mg/mL). For the same species, the percentage reduction in violacein production ranged from 56.4 to 97.3%. Zones with violacein inhibitory effects were evident in a celery extract analysed using high performance thin layer chromatography-bio-autography. The major active compound was isolated from celery using preparative-high performance liquid chromatography-mass spectrometry and identified using gas chromatography-mass spectrometry (GC-MS) as 3-n-butyl-4,5-dihydrophthalide (sedanenolide). Potent opaque zones of inhibition observed on the HPTLC-bio-autography plate seeded with C. violaceum confirmed that sedanenolide was probably largely responsible for the AQS activity of celery. The bacteriocidal properties of many herbs and spices are reported. This study, however, was focussed on AQS activity, and may serve as initial scientific validation for the anti-infective properties ascribed to several culinary herbs and spices. Full article
Show Figures

Figure 1

Back to TopTop