Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = secondary methicillin-resistant Staphylococcus aureus infection following influenza A virus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4465 KB  
Article
Lactobacillus murinus Reduces Susceptibility to Secondary MRSA Infection in IAV-Infected Mice Through Promoting a T Cell-Independent IgA Response
by Qichao Chen, Yanfeng Lin, Kaiying Wang, Jinhui Li, Peng Li and Hongbin Song
Microorganisms 2025, 13(7), 1709; https://doi.org/10.3390/microorganisms13071709 - 21 Jul 2025
Viewed by 399
Abstract
Secondary methicillin-resistant Staphylococcus aureus (MRSA) infection causes high mortality in patients with influenza A virus (IAV). Our previous study observed that the relative abundance of Lactobacillus murinus (L. murinus) was significantly reduced in both the respiratory tract and gut of IAV-infected [...] Read more.
Secondary methicillin-resistant Staphylococcus aureus (MRSA) infection causes high mortality in patients with influenza A virus (IAV). Our previous study observed that the relative abundance of Lactobacillus murinus (L. murinus) was significantly reduced in both the respiratory tract and gut of IAV-infected mice and negatively correlated with the severity of IAV–MRSA coinfection pneumonia, but the role of L. murinus remains unclear. Here, we supplemented the respiratory tract and gut of IAV-infected mice with live L. murinus and performed a secondary MRSA infection challenge to investigate the effects and potential mechanisms further. Data showed that L. murinus supplementation significantly reduced mortality and pathogen loads in IAV–MRSA coinfected mice and upregulated the lung T cell-independent (TI) IgA response in IAV-infected mice. The 16S rRNA gene sequencing results showed that L. murinus supplementation ameliorated microbiota composition disorder and regulated metabolic dysfunction in the gut of IAV-infected mice. The correlation analysis and antibiotic cocktail treatment experiment showed that the TI IgA response in lungs is dependent on gut microbiota. These findings demonstrated that L. murinus supplementation reduces susceptibility to secondary MRSA infection in IAV-infected mice by promoting the TI IgA response, and provide a new perspective on the use of probiotics to prevent secondary bacterial infection following IAV infection. Full article
(This article belongs to the Special Issue Advances in Host-Gut Microbiota)
Show Figures

Figure 1

Back to TopTop