Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = seas of the Russian sector of the Arctic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2950 KB  
Review
The Main Geohazards in the Russian Sector of the Arctic Ocean
by Artem A. Krylov, Daria D. Rukavishnikova, Mikhail A. Novikov, Boris V. Baranov, Igor P. Medvedev, Sergey A. Kovachev, Leopold I. Lobkovsky and Igor P. Semiletov
J. Mar. Sci. Eng. 2024, 12(12), 2209; https://doi.org/10.3390/jmse12122209 - 2 Dec 2024
Cited by 1 | Viewed by 2162
Abstract
The Arctic region, including vast shelf zones, has enormous resource and transport potential and is currently key to Russia’s strategic development. This region is promising and attractive for the intensification of global economic activity. When developing this region, it is very important to [...] Read more.
The Arctic region, including vast shelf zones, has enormous resource and transport potential and is currently key to Russia’s strategic development. This region is promising and attractive for the intensification of global economic activity. When developing this region, it is very important to avoid emergency situations that could result in numerous negative environmental and socio-economic consequences. Therefore, when designing and constructing critical infrastructure facilities in the Arctic, it is necessary to conduct high-quality studies of potential geohazards. This paper reviews and summarizes the scattered information on the main geohazards in the Russian sector of the Arctic Ocean, such as earthquakes, underwater landslides, tsunamis, and focused fluid discharges (gas seeps), and discusses patterns of their spatial distribution and possible relationships with the geodynamic setting of the Arctic region. The study revealed that the main patterns of the mutual distribution of the main geohazards of the Russian sector of the Arctic seas are determined by both the modern geodynamic situation in the region and the history of the geodynamic evolution of the Arctic, namely the formation of the spreading axis and deep-sea basins of the Arctic Ocean. The high probability of the influence of seismotectonic activity on the state of subsea permafrost and massive methane release is emphasized. This review contributes toward better understanding and progress in the zoning of seismic and other geological hazards in the vast Arctic seas of Russia. Full article
(This article belongs to the Special Issue Marine Geohazards: Characterization to Prediction)
Show Figures

Figure 1

26 pages, 4587 KB  
Article
The Influence of Arctic Conditions on the Formation of Algae and Cyanobacteria Diversity and on the Water Quality of Freshwater Habitats on Kotelny Island, Lena Delta Wildlife Reserve, Yakutia
by Sophia Barinova and Viktor Gabyshev
Water 2024, 16(9), 1231; https://doi.org/10.3390/w16091231 - 25 Apr 2024
Cited by 3 | Viewed by 1514
Abstract
The significant interest in the islands in the Russian Arctic has been in terms of available oil reserves, which determine the direction of economic development and associated environmental risks for this sector of the Arctic in the near future. Kotelny Island is the [...] Read more.
The significant interest in the islands in the Russian Arctic has been in terms of available oil reserves, which determine the direction of economic development and associated environmental risks for this sector of the Arctic in the near future. Kotelny Island is the largest island of the New Siberian Islands Archipelago included in the protected zone of the Lena Delta Nature Reserve, which is located at 76° N, washed from the west by the Laptev Sea, washed from the east by the East Siberian Sea in a permafrost zone, and characterized by harsh climatic conditions defined by the northeast winds that prevail in vegetative season. January sees temperatures ranging from −32 to −35 °C, and July from +6 to +8 °C, which causes a short growing season. Samples were taken between August 3 and 8, 2018 in 12 freshwater bodies where 210 taxa were revealed. Aquatic communities were dominated by zygnematophycean and diatom algae, grouped in the basins of two rivers and associated with the position on the island’s landscape, which suggests the influence of cold north-east winds, leading to the avoidance of habitats in open and high places, which was revealed by statistical methods and also confirms the high individuality of taxa composition. Bioindication methods showed that water bodies are slightly alkaline, with low ion concentrations, with the presence of sulfides in low-lying habitats, and average saturation with organic matter. The mesotrophic status of the studied water bodies was evaluated through an assessment and the type of nutrition in the communities of algae and cyanobacteria indicates they formed there as true autotrophs, which corresponds to the status of a protected area and can serve as a reference level for monitoring anthropogenic impact. Full article
Show Figures

Figure 1

15 pages, 1456 KB  
Article
Culturable Microorganisms of Aerosols Sampled during Aircraft Sounding of the Atmosphere over the Russian Arctic Seas
by Irina S. Andreeva, Aleksandr S. Safatov, Larisa I. Puchkova, Nadezhda A. Solovyanova, Olesya V. Okhlopkova, Maksim E. Rebus, Galina A. Buryak, Boris D. Belan and Denis V. Simonenkov
Atmosphere 2024, 15(3), 365; https://doi.org/10.3390/atmos15030365 - 17 Mar 2024
Cited by 4 | Viewed by 2312
Abstract
Atmospheric sounding using the Tu-134 Optik aircraft-laboratory was conducted in September 2020 over the seas of the Russian sector of the Arctic Ocean, namely the Barents, Kara, Laptev, East Siberian, Chukchi and Bering seas. Unique samples of atmospheric aerosols at altitudes from 200 [...] Read more.
Atmospheric sounding using the Tu-134 Optik aircraft-laboratory was conducted in September 2020 over the seas of the Russian sector of the Arctic Ocean, namely the Barents, Kara, Laptev, East Siberian, Chukchi and Bering seas. Unique samples of atmospheric aerosols at altitudes from 200 and up to 10,000 m were taken, including samples for the identification of cultivated microorganisms and their genetic analysis. Data on the concentration and diversity of bacteria and fungi isolated from 24 samples of atmospheric aerosols are presented; the main phenotypic and genomic characteristics were obtained for 152 bacterial cultures; and taxonomic belonging was determined. The concentration of cultured microorganisms detected in aerosols of different locations was similar, averaging 5.5 × 103 CFU/m3. No dependence of the number of isolated microorganisms on the height and location of aerosol sampling was observed. The presence of pathogenic and condto shitionally pathogenic bacteria, including those referred to in the genera Staphylococcus, Kocuria, Rothia, Comamonas, Brevundimonas, Acinetobacter, and others, as well as fungi represented by the widely spread genera Aureobasidium, Aspergillus, Alternaria, Penicillium, capable of causing infectious and allergic diseases were present in most analyzed samples. Obtained data reveal the necessity of systematic studies of atmospheric microbiota composition to combat emerging population diseases. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

20 pages, 6463 KB  
Article
Features of Seismological Observations in the Arctic Seas
by Artem A. Krylov, Mikhail A. Novikov, Sergey A. Kovachev, Konstantin A. Roginskiy, Dmitry A. Ilinsky, Oleg Yu. Ganzha, Vladimir N. Ivanov, Georgy K. Timashkevich, Olga S. Samylina, Leopold I. Lobkovsky and Igor P. Semiletov
J. Mar. Sci. Eng. 2023, 11(12), 2221; https://doi.org/10.3390/jmse11122221 - 23 Nov 2023
Cited by 9 | Viewed by 2120
Abstract
This paper is devoted to the features of seismological observations in the Arctic seas, which are complicated by harsh climatic conditions, the presence of ice cover, stamukhi and icebergs, and limited navigation. Despite the high risk of losing expensive equipment, the deployment of [...] Read more.
This paper is devoted to the features of seismological observations in the Arctic seas, which are complicated by harsh climatic conditions, the presence of ice cover, stamukhi and icebergs, and limited navigation. Despite the high risk of losing expensive equipment, the deployment of local networks of bottom seismographs or stations installed on ice is still necessary for studying the seismotectonic characteristics and geodynamic processes of the region under consideration, the deep structure of the crust and upper mantle, seismic hazards, and other marine geohazards. Various types of seismic stations used for long-term and short-term deployments in the Russian sector of the Arctic Ocean, as well as various schemes and workflows for their deployment/recovery, are described. The characteristics of seafloor seismic noise and their features are also considered. The results of deployments demonstrate that the characteristics of the stations make it possible to reliably record earthquake signals and seismic noise. Based on the experience gained, it was concluded that the preferred schemes for deploying ocean-bottom seismographs are those in which their subsequent recovery does not depend on their power resources. Usually, such schemes allow for the possibility of dismantling stations via trawling and are suitable for the shelf depths of the sea. The advantages of such schemes include the possibility of installing additional hydrophysical and hydrobiological equipment. When using pop-up ocean-bottom seismographs, special attention should be paid to the careful planning of the recovery because its success depends on the possibility of a passage to the deployment site, which is not always possible due to changing meteorological and ice conditions. Seismic records obtained on the seafloor are characterized by a high noise level, especially during periods of time when there is no ice cover. Therefore, it is recommended to install bottom stations for periods of time when ice cover is present. The frequency range of the prevailing noise significantly overlaps with the frequency range of earthquake signals that must be taken into account when processing bottom seismic records. Full article
(This article belongs to the Special Issue Recent Advances in Geological Oceanography II)
Show Figures

Figure 1

24 pages, 15240 KB  
Review
A Complex of Marine Geophysical Methods for Studying Gas Emission Process on the Arctic Shelf
by Artem A. Krylov, Roman A. Ananiev, Denis V. Chernykh, Dmitry A. Alekseev, Ermolay I. Balikhin, Nikolay N. Dmitrevsky, Mikhail A. Novikov, Elena A. Radiuk, Anna V. Domaniuk, Sergey A. Kovachev, Georgy K. Timashkevich, Vladimir N. Ivanov, Dmitry A. Ilinsky, Oleg Yu. Ganzha, Alexey Yu. Gunar, Pavel Yu. Pushkarev, Andrey V. Koshurnikov, Leopold I. Lobkovsky and Igor P. Semiletov
Sensors 2023, 23(8), 3872; https://doi.org/10.3390/s23083872 - 10 Apr 2023
Cited by 13 | Viewed by 4437
Abstract
The Russian sector of the arctic shelf is the longest in the world. Quite a lot of places of massive discharge of bubble methane from the seabed into the water column and further into the atmosphere were found there. This natural phenomenon requires [...] Read more.
The Russian sector of the arctic shelf is the longest in the world. Quite a lot of places of massive discharge of bubble methane from the seabed into the water column and further into the atmosphere were found there. This natural phenomenon requires an extensive complex of geological, biological, geophysical, and chemical studies. This article is devoted to aspects of the use of a complex of marine geophysical equipment applied in the Russian sector of the arctic shelf for the detection and study of areas of the water and sedimentary strata with increased saturation with natural gases, as well as a description of some of the results obtained. This complex contains a single-beam scientific high-frequency echo sounder and multibeam system, a sub-bottom profiler, ocean-bottom seismographs, and equipment for continuous seismoacoustic profiling and electrical exploration. The experience of using the above equipment and the examples of the results obtained in the Laptev Sea have shown that these marine geophysical methods are effective and of particular importance for solving most problems related to the detection, mapping, quantification, and monitoring of underwater gas release from the bottom sediments of the shelf zone of the arctic seas, as well as the study of upper and deeper geological roots of gas emission and their relationship with tectonic processes. Geophysical surveys have a significant performance advantage compared to any contact methods. The large-scale application of a wide range of marine geophysical methods is essential for a comprehensive study of the geohazards of vast shelf zones, which have significant potential for economic use. Full article
(This article belongs to the Special Issue Marine Sensors: Recent Advances and Challenges, Volume II)
Show Figures

Figure 1

Back to TopTop