Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = scalable ultra-reliable low-latency communications (URLLC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 592 KiB  
Article
Analysis of Universal Decoding Techniques for 6G Ultra-Reliable and Low-Latency Communication Scenario
by Abhilasha Gautam, Prabhat Thakur and Ghanshyam Singh
Future Internet 2025, 17(4), 181; https://doi.org/10.3390/fi17040181 - 21 Apr 2025
Cited by 1 | Viewed by 600
Abstract
Ultra-reliable and low-latency communication (URLLC) in 6G networks is characterized by very high reliability and very low latency to enable mission-critical applications. The ability of a coding scheme to support diverse use cases requires flexibility on the part of the decoder. High reliability [...] Read more.
Ultra-reliable and low-latency communication (URLLC) in 6G networks is characterized by very high reliability and very low latency to enable mission-critical applications. The ability of a coding scheme to support diverse use cases requires flexibility on the part of the decoder. High reliability and low latency require decoders with improved error rate performance and reduced complexity. This article investigates candidate universal decoding algorithms for 6G communication scenarios. Universal decoders work on a wide range of error-correcting codes, making them scalable for different communication protocols. This article undertakes the comparative analysis and performance evaluation of the code-agnostic decoding schemes, including automorphism ensemble (AED), guessing random additive noise (GRAND), ordered statistics (OSD), belief propagation (BPD), bit flipping (BFD), and their variants. Simulations are carried out in MATLAB (R2024a) for the error rate performance of decoders, and plots are provided for the comparative analysis from the results of inferred data. The key findings in this paper highlight the competitive advantage of universal decoding techniques in comparison to the standardized CA-SCL decoding of polar code. Consequently, this work will help in identifying more efficient decoding algorithms for potential 6G URLLC applications. We aim to provide an insight into the scalability of universal decoding techniques by exploring their key performance metrics and comparing their performances. Full article
(This article belongs to the Section Smart System Infrastructure and Applications)
Show Figures

Figure 1

22 pages, 3454 KiB  
Article
An Applied Analysis of Securing 5G/6G Core Networks with Post-Quantum Key Encapsulation Methods
by Paul Scalise, Robert Garcia, Matthew Boeding, Michael Hempel and Hamid Sharif
Electronics 2024, 13(21), 4258; https://doi.org/10.3390/electronics13214258 - 30 Oct 2024
Cited by 3 | Viewed by 3462
Abstract
Fifth Generation (5G) cellular networks have been adopted worldwide since the rollout began around 2019. It brought with it many innovations and new services, such as Enhanced Mobile Broadband (eMBB), Ultra Reliable and Low-Latency Communications (URLLC), and Massive Internet of Things (mIoT). Furthermore, [...] Read more.
Fifth Generation (5G) cellular networks have been adopted worldwide since the rollout began around 2019. It brought with it many innovations and new services, such as Enhanced Mobile Broadband (eMBB), Ultra Reliable and Low-Latency Communications (URLLC), and Massive Internet of Things (mIoT). Furthermore, 5G introduced a more scalable approach to network operations using fully software-based Virtualized Network Functions (VNF) in Core Networks (CN) rather than the prior hardware-based approach. However, while this shift towards a fully software-based system design provides numerous significant benefits, such as increased interoperability, scalability, and cost-effectiveness, it also brings with it an increased cybersecurity risk. Security is crucial to maintaining trust between vendors, operators, and consumers. Cyberattacks are rapidly increasing in number and sophistication, and we are seeing a shift towards zero-trust approaches. This means that even communications between VNFs inside a 5G core must be scrutinized and hardened against attacks, especially with the advent of quantum computers. The National Institute of Standards and Technology (NIST), over the past 10 years, has led efforts to standardize post-quantum cryptography (PQC) to protect against quantum attacks. This paper covers a custom implementation of the open-source free5GC CN, to expand its HTTPS capabilities for VNFs by introducing PQC Key Encapsulation Methods (KEM) for Transport Layer Security (TLS) v1.3. This paper provides the details of this integration with a focus on the latency of different PQC KEMs in initial handshakes between VNFs, on packet size, and the implications in a 5G environment. This work also conducts a security comparison between the PQC-equipped free5GC and other open-source 5G CNs. The presented results indicate a negligible increase in UE connection setup duration and a small increase in connection setup data requirements, strongly indicating that PQC KEM’s benefits far outweigh any downsides when integrated into 5G and 6G core services. To the best of our knowledge, this is the first work incorporating PQC into an open-source 5G core. Furthermore, the results from this effort demonstrate that employing PQC ciphers for securing VNF communications results in only a negligible impact on latency and bandwidth usage, thus demonstrating significant benefits to 5G cybersecurity. Full article
Show Figures

Figure 1

12 pages, 1157 KiB  
Article
Multi-Layered Unsupervised Learning Driven by Signal-to-Noise Ratio-Based Relaying for Vehicular Ad Hoc Network-Supported Intelligent Transport System in eHealth Monitoring
by Ali Nauman, Adeel Iqbal, Tahir Khurshaid and Sung Won Kim
Sensors 2024, 24(20), 6548; https://doi.org/10.3390/s24206548 - 11 Oct 2024
Cited by 1 | Viewed by 1705
Abstract
Every year, about 1.19 million people are killed in traffic accidents; hence, the United Nations has a goal of halving the number of road traffic deaths and injuries by 2030. In line with this objective, technological innovations in telecommunication, particularly brought about by [...] Read more.
Every year, about 1.19 million people are killed in traffic accidents; hence, the United Nations has a goal of halving the number of road traffic deaths and injuries by 2030. In line with this objective, technological innovations in telecommunication, particularly brought about by the rise of 5G networks, have contributed to the development of modern Vehicle-to-Everything (V2X) systems for communication. A New Radio V2X (NR-V2X) was introduced in the latest Third Generation Partnership Project (3GPP) releases which allows user devices to exchange information without relying on roadside infrastructures. This, together with Massive Machine Type Communication (mMTC) and Ultra-Reliable Low Latency Communication (URLLC), has led to the significantly increased reliability, coverage, and efficiency of vehicular communication networks. The use of artificial intelligence (AI), especially K-means clustering, has been very promising in terms of supporting efficient data exchange in vehicular ad hoc networks (VANETs). K-means is an unsupervised machine learning (ML) technique that groups vehicles located near each other geographically so that they can communicate with one another directly within these clusters while also allowing for inter-cluster communication via cluster heads. This paper proposes a multi-layered VANET-enabled Intelligent Transportation System (ITS) framework powered by unsupervised learning to optimize communication efficiency, scalability, and reliability. By leveraging AI in VANET solutions, the proposed framework aims to address road safety challenges and contribute to global efforts to meet the United Nations’ 2030 target. Additionally, this framework’s robust communication and data processing capabilities can be extended to eHealth monitoring systems, enabling real-time health data transmission and processing for continuous patient monitoring and timely medical interventions. This paper’s contributions include exploring AI-driven approaches for enhanced data interaction, improved safety in VANET-based ITS environments, and potential applications in eHealth monitoring. Full article
(This article belongs to the Special Issue Intelligent Sensors and Control for Vehicle Automation)
Show Figures

Figure 1

26 pages, 4859 KiB  
Article
A Price-and-Branch Algorithm for Network Slice Optimization in Packet-Switched Xhaul Access Networks
by Mirosław Klinkowski
Appl. Sci. 2024, 14(13), 5608; https://doi.org/10.3390/app14135608 - 27 Jun 2024
Cited by 1 | Viewed by 973
Abstract
Network slicing is a concept introduced in 5G networks that supports the provisioning of multiple types of mobile services with diversified quality of service (QoS) requirements in a shared network. Network slicing concerns the placement/allocation of radio processing resources and traffic flow transport [...] Read more.
Network slicing is a concept introduced in 5G networks that supports the provisioning of multiple types of mobile services with diversified quality of service (QoS) requirements in a shared network. Network slicing concerns the placement/allocation of radio processing resources and traffic flow transport over the Xhaul transport network—connecting the 5G radio access network (RAN) elements—for multiple services while ensuring the slices’ isolation and fulfilling specific service requirements. This work focuses on modeling and optimizing network slicing in packet-switched Xhaul networks, a cost-effective, flexible, and scalable transport solution in 5G RANs. The considered network scenario assumes two types of network slices related to enhanced mobile broadband (eMBB) and ultra-reliable low-latency communications (URLLC) services. We formulate a network slicing planning optimization problem and model it as a mixed-integer linear programming (MILP) problem. Moreover, we develop an efficient price-and-branch algorithm (PBA) based on column generation (CG). This advanced optimization technique allows for overcoming the MILP model’s poor performance when solving larger network problem instances. Using extensive numerical experiments, we show the advantages of the PBA regarding the quality of the solutions obtained and the computation times, and analyze the packet-switched Xhaul network’s performance in various network slicing scenarios. Full article
(This article belongs to the Special Issue Communication Networks: From Technology, Methods to Applications)
Show Figures

Figure 1

21 pages, 387 KiB  
Article
Design of Multi-User Noncoherent Massive SIMO Systems for Scalable URLLC
by Zheng Dong, He Chen and Jian-Kang Zhang
Entropy 2023, 25(9), 1325; https://doi.org/10.3390/e25091325 - 12 Sep 2023
Cited by 3 | Viewed by 1791
Abstract
This paper develops and optimizes a non-orthogonal and noncoherent multi-user massive single-input multiple-output (SIMO) framework, with the objective of enabling scalable ultra-reliable low-latency communications (sURLLC) in Beyond-5G (B5G)/6G wireless communication systems. In this framework, the huge diversity gain associated with the large-scale antenna [...] Read more.
This paper develops and optimizes a non-orthogonal and noncoherent multi-user massive single-input multiple-output (SIMO) framework, with the objective of enabling scalable ultra-reliable low-latency communications (sURLLC) in Beyond-5G (B5G)/6G wireless communication systems. In this framework, the huge diversity gain associated with the large-scale antenna array in the massive SIMO system is leveraged to ensure ultra-high reliability. To reduce the overhead and latency induced by the channel estimation process, we advocate for the noncoherent communication technique, which does not need the knowledge of instantaneous channel state information (CSI) but only relies on large-scale fading coefficients for message decoding. To boost the scalability of noncoherent massive SIMO systems, we enable the non-orthogonal channel access of multiple users by devising a new differential modulation scheme to ensure that each transmitted signal matrix can be uniquely determined in the noise-free case and be reliably estimated in noisy cases when the antenna array size is scaled up. The key idea is to make the transmitted signals from multiple geographically separated users be superimposed properly over the air, such that when the sum signal is correctly detected, the signal sent by each individual user can be uniquely determined. To further enhance the average error performance when the array antenna number is large, we propose a max–min Kullback–Leibler (KL) divergence-based design by jointly optimizing the transmitted powers of all users and the sub-constellation assignments among them. The simulation results show that the proposed design significantly outperforms the existing max–min Euclidean distance-based counterpart in terms of error performance. Moreover, our proposed approach also has a better error performance compared to the conventional coherent zero-forcing (ZF) receiver with orthogonal channel training, particularly for cell-edge users. Full article
(This article belongs to the Special Issue Advances in Multiuser Information Theory)
Show Figures

Figure 1

17 pages, 453 KiB  
Article
A Survey on Resource Management for Cloud Native Mobile Computing: Opportunities and Challenges
by Shih-Yun Huang, Cheng-Yu Chen, Jen-Yeu Chen and Han-Chieh Chao
Symmetry 2023, 15(2), 538; https://doi.org/10.3390/sym15020538 - 17 Feb 2023
Cited by 24 | Viewed by 5715
Abstract
Fifth-generation mobile communication networks (5G)/Beyond 5G (B5G) can achieve higher data rates, more significant connectivity, and lower latency to provide various mobile computing service categories, of which enhanced mobile broadband (eMBB), massive machine-type communications (mMTC), and ultra-reliable and low latency communications (URLLC) are [...] Read more.
Fifth-generation mobile communication networks (5G)/Beyond 5G (B5G) can achieve higher data rates, more significant connectivity, and lower latency to provide various mobile computing service categories, of which enhanced mobile broadband (eMBB), massive machine-type communications (mMTC), and ultra-reliable and low latency communications (URLLC) are the three extreme cases. A symmetrically balanced mechanism must be considered in advance to fit the different requirements of such a wide variety of service categories and ensure that the limited resource capacity has been properly allocated. Therefore, a new network service architecture with higher flexibility, dispatchability, and symmetrical adaptivity is demanded. The cloud native architecture that enables service providers to build and run scalable applications/services is highly favored in such a setting, while a symmetrical resource allocation is still preserved. The microservice function in the cloud native architecture can further accelerate the development of various services in a 5G/B5G mobile wireless network. In addition, each microservice part can handle a dedicated service, making overall network management easier. There have been many research and development efforts in the recent literature on topics pertinent to cloud native, such as containerized provisioning, network slicing, and automation. However, there are still some problems and challenges ahead to be addressed. Among them, optimizing resource management for the best performance is fundamentally crucial given the challenge that the resource distribution in the cloud native architecture may need more symmetry. Thus, this paper will survey cloud native mobile computing, focusing on resource management issues of network slicing and containerization. Full article
Show Figures

Figure 1

17 pages, 5347 KiB  
Article
Network Slicing for mMTC and URLLC Using Software-Defined Networking with P4 Switches
by Yan-Jing Wu, Wen-Shyang Hwang, Chih-Yi Shen and Yu-Yen Chen
Electronics 2022, 11(14), 2111; https://doi.org/10.3390/electronics11142111 - 6 Jul 2022
Cited by 13 | Viewed by 3986
Abstract
Massive machine-type communication (mMTC) and ultra-reliable low-latency communication (URLLC) are two key services in fifth-generation (5G) mobile wireless networks. These networks have been developed with extremely high service quality requirements: scalability for mMTC and reliability with low latency for URLLC. Fifth-generation network slicing [...] Read more.
Massive machine-type communication (mMTC) and ultra-reliable low-latency communication (URLLC) are two key services in fifth-generation (5G) mobile wireless networks. These networks have been developed with extremely high service quality requirements: scalability for mMTC and reliability with low latency for URLLC. Fifth-generation network slicing will play a key role in supporting the distinct requirements of various services. Software-defined networking (SDN), a promising technology for network softwarization, physically separates the network control plane from the data plane by centrally controlling switches with an SDN controller. However, control channel bottleneck and processing delays due to this centralized control may reduce the scalability, reliability, and security of SDN. This paper proposes an SDN framework with programming protocol–independent packet processor (P4) switches (SDNPS), and defines a packet format containing in-band network telemetry data to simultaneously support heavy Internet of Things and URLLC traffic in 5G network slices. The method both satisfies the requirements of mMTC and URLLC and alleviates the load on the SDN controller. P4 is an advanced switch interface technology that provides enhanced stateful forwarding and reveals a persistent state on the SDN data plane. To demonstrate the superiority of SDNPS, simulations are performed on conventional SDNs and SDNPS. SDNPS outperforms the other schemes in terms of average throughput, packet loss ratio, and packet delay for both the mMTC and URLLC network slices. Full article
(This article belongs to the Special Issue Challenges in 5G and IoT Environments)
Show Figures

Figure 1

Back to TopTop