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Abstract: Fifth-generation mobile communication networks (5G)/Beyond 5G (B5G) can achieve
higher data rates, more significant connectivity, and lower latency to provide various mobile com-
puting service categories, of which enhanced mobile broadband (eMBB), massive machine-type
communications (mMTC), and ultra-reliable and low latency communications (URLLC) are the three
extreme cases. A symmetrically balanced mechanism must be considered in advance to fit the differ-
ent requirements of such a wide variety of service categories and ensure that the limited resource
capacity has been properly allocated. Therefore, a new network service architecture with higher
flexibility, dispatchability, and symmetrical adaptivity is demanded. The cloud native architecture
that enables service providers to build and run scalable applications/services is highly favored in
such a setting, while a symmetrical resource allocation is still preserved. The microservice function in
the cloud native architecture can further accelerate the development of various services in a 5G/B5G
mobile wireless network. In addition, each microservice part can handle a dedicated service, making
overall network management easier. There have been many research and development efforts in
the recent literature on topics pertinent to cloud native, such as containerized provisioning, network
slicing, and automation. However, there are still some problems and challenges ahead to be ad-
dressed. Among them, optimizing resource management for the best performance is fundamentally
crucial given the challenge that the resource distribution in the cloud native architecture may need
more symmetry. Thus, this paper will survey cloud native mobile computing, focusing on resource
management issues of network slicing and containerization.

Keywords: 5G/B5G mobile wireless networks; cloud native mobile computing; resource management;
network slicing; container

1. Introduction

As the deployment and commercial development of fifth-generation mobile commu-
nications (5G)/ Beyond 5G (B5G) begin to heat up, many emerging applications, manu-
facturing, and business models have occurred in the market, such as mixed reality (MR),
intelligent manufacturing (IM), and eHealth. These applications benefit from the significant
technical requirements provided by 5G, namely, enhanced mobile bandwidth, lower latency,
and the ability for massive devices to access wireless networks simultaneously [1–4]. How-
ever, although 5G/B5G can provide good quality of service (QoS) to each user equipment
(UE), most applications will generate vast and disparate data, making network manage-
ment difficult. In addition, in the report provided by Cisco [5], we can find that due to the
explosive growth of mobile devices in recent years, mobile data traffic will be higher than
in the past decade. According to the Next Generation Mobile Networks Alliance (NGMN),
operators should meet three requirements: end-to-end system automation and end-to-end
system visibility, and system efficiency and management [6].

Furthermore, 5G/B5G is a heterogeneous network (HetNet); that is, it can allow
multiple types of networks to exist and access simultaneously, which is very different from
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the traditional cellular network. It also leads to management and automation, and the
pursuit of efficiency is more complicated than conventional wireless networks. Considering
that the traffic and services generated by HetNet are not the same, a good solution is
urgently needed to help network operators and service providers to manage mechanisms
better; hence, the concept of cloud native was proposed at this time.

In order to better know the cloud native, we must first introduce traditional cloud
technology. According to the [7], the concept of cloud architecture is virtualization. Thanks
to the virtualization function, the cloud has three advantages for people to use; they are
infrastructure as a service (IaaS), platform as a service (PaaS), and software as a service
(SaaS). We will deploy multiple virtual machines (VMs) in the cloud environment in
the physical machine (PM). Each VM can use parallel computing technology to provide
computing power, enhancing the overall computing performance of the cloud. Research on
the cloud has been a hot topic in this decade, and most of the literature is also focused on
the discussion of resource management [8–12], green energy [13–15], and security [16–18].
Although we focus on the debate on cloud native resource management, cloud resource
management technologies still have the opportunity to become a solution to the problems
encountered by cloud native.

Therefore, we will briefly discuss the state of the art for cloud resource allocation
technologies. The concept of symmetry in cloud resource management is also mentioned
and explained in detail in [19]. Most of the cloud resource management has achieved
symmetry as one of its goals, and load balancing is a method of expressing symmetry.
In [20], Jena et al. considered that it should balance all VMs. Hence, they defined the load,
energy efficiency, and task priority in detail and used Q-Learning in reinforcement learning
to update the pbest and gbest parameters in the particle swarm algorithm in this research.

Meanwhile, considering the service level agreement (SLA) requirements and task
deadlines, Ref. [21] proposed a new load balancing algorithm by QoS and VM priority
parameters. On the other hand, the resource management of fog-cloud computing has
become a more important topic due to the rise of fog computing in recent years. In [22],
considering the latency increased when the IoT device transmitted the data to the cloud.
Therefore, if fog computing is used, the latency will greater reduce. However, the resource
for fog is limited; hence, resource management happens between fog and cloud. This study
also uses the learning method for the management of the resource. In [23], a task scheduling
method based on a genetic algorithm (GA) is proposed to solve the resource allocation
problem. Finally, Xue et al. focused on the scalability issue in the request scheduling
process [24]. In addition to presenting a stochastic preemptive priority queue, they also
carefully discussed different cloud environments and architectures.

Ref. [25] presents a taxonomy of resource management techniques and discusses the
research challenges these technologies face: energy efficiency, load balancing, hybrid cloud
computing, mobile cloud computing, SLA-awareness, network load minimization, and
profit maximization. Ref. [26] classified the mobile virtualization techniques and focused on
ARM (Advanced RISC Machine) architecture analysis. Virtualization technologies can be
categorized as bare-metal and hosted virtualization techniques. In bare-metal virtualization
techniques, the hypervisor runs directly over the underlying hardware of the OS; In hosted
virtualization techniques, the guest OSs are virtualized over a host OS. They also mention
that ARM does not support network function virtualization; it only has general support for
I/O virtualization. Therefore, research on network function virtualization customized for
mobile devices is a significant future challenge.

Due to the benefits and convenience brought by cloud computing, more and more
enterprises are turning their business focus to the application of virtualization technology.
Cloud computing uses a lot of virtualization technology to make management easier and
save energy. However, the deployment will be less flexible and fast because the prominent
architecture uses VMs. Meanwhile, VM will also cost more hardware resources. Container-
ization technology is widely used in cloud native architecture to reduce the consumption of
hardware resources because this technology does not need to simulate hardware resources.
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Instead, it focuses on applications to implement microservices more smoothly for fast and
flexible deployment. In the 5G environment, it must provide various network services due
to the many different network types. Therefore, in the past few years, there have been
many studies to analyze the network traffic of various applications and provide optimal
resource allocation [27–31], energy efficiency [32–34], and security issues [35–37]. At the
same time, many enterprises have gradually realized that the traditional service structure
and operation method will usher in significant changes. Enterprises will face the challenge
of business transformation because of the diversity of 5G services. Google, AWS, RedHat,
VMWare, and other companies formed the cloud native computing foundation (CNCF);
the main job is to promote the cloud native architecture so that enterprises can get rid of
the dilemma of relying on fixed vendors to provide network services. The cloud native
computing foundation (CNCF) is formed by enterprises such as Google, AWS, RedHat,
and VMWare. The most straightforward concept in cloud native is designing applications,
building microservices, and operating workloads [38]. These workloads are made in the
cloud and take advantage of the cloud computing model.

On the other hand, CNCF provides a more detailed explanation of cloud native, which
allow organizations to build and execute scalable applications in modern and dynamic
environments, including public cloud, private cloud, and hybrid cloud. At the same time,
cloud native will also use containerization and microservices. These techniques are loosely
bound systems that are resilient, manageable, and observable. Although cloud native will
use technologies such as the above, the focus is still on the problems that need to be solved,
using the exemplary cloud architecture, developing and running on the cloud to address
the limitations of a single architecture. In addition, it will fully utilize the concept of cloud
native in mobile communications. The basic idea for cloud native and network architecture
of 5G combined with cloud native is shown in Figures 1 and 2. In Figure 2, we know that
network virtualization technology and containerization technology can perform network
slicing of the 5G core network functions so that each container can run independently and
increase the overall network performance [39–41].

Figure 1. The basic concept for cloud native.
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Figure 2. The cloud native architecture with 5G.

Network slicing plays a significant role in next-generation networks. Unlike the
traditional one-size-fits-all cellular network architecture, it slices the resource of the physical
network infrastructure into dedicated logical networks to provide tailor-made solutions
for different application scenarios, and service types [42,43]. Network slicing technology
constructs a direct connection path for the cloud and the terminal to optimize service
efficiency. In addition, slices are independent; the overload, congestion, and network
functions in different slices will not affect each other.

The essential enabling technology of network slicing is network function virtualization
(NFV). In 2012, operators initiated the concept of NFV at European Telecommunications
Standards Institute (ETSI) [44]; it allows network functions (NFs) to be deployed on com-
mercial servers as software. NFV uses virtualization technology to decouple network
function and dedicated hardware to promote the composability and flexibility of network
function [45]. However, although the NFV architecture has changed how network functions
are realized and deployed, it has mostly stayed the way it was designed [46]. Therefore,
using monolithic software virtual network function (VNF) to replace their monolithic
hardware-based network functions to implement NFV results in poor use of resources
and hinders network agility. For this reason, the concept of cloud native is proposed to
avoid these problems [47]. By decomposing a monolithic VNF into a set of cooperating
services called “microservices”, the ossification issue with current NFV architectures can
be resolved. However, since the distribution of resources in a cloud native architecture may
be asymmetrical, the resource management issue of network slicing needs to be discussed
in depth.

In addition to containerization, microservices have gradually become one of the crit-
ical technologies for cloud native. From [48–50], microservices are an architectural and
organizational approach to software development in which software consists of small
independent services that communicate through well-defined APIs. In addition, it has
the characteristics of spontaneity and specialization. Each component service in the mi-
croservice can be freely developed, deployed, operated, and extended without affecting
other functions. Furthermore, each service is designed for functional designs that focus on
solving a specific problem. To summarize these descriptions, cloud native technology can
be deployed quickly and is scalable and resilient. According to the nature of containeriza-
tion, the distribution of containers over the host platform is asymmetrical and fluctuating
because containers can be added, deleted, or migrated over time. Hence, developing an
adequate resource allocation scheme has always been critical to cloud native. More and
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more literature has conducted in-depth discussions on cloud native technologies, including
security, architecture, and resource allocation. According to the cloud native architecture
and characteristics, containerization and microservices make development easier. We will
focus on cloud native resource allocation issues for sorting and a detailed introduction.
Resource allocation has always been an essential topic in wireless networks and clouds.
Most of the research will focus on resource management in the cloud, the number of mi-
grations [51,52], the control of VMs, and energy efficiency. This article will be divided
into four categories for discussion: resource allocation of containers, resource allocation of
microservices, network slicing, and network virtualization technologies.

The hierarchical architecture of the research proposed in this paper is shown in Figure 3,
which also contains relevant literature.

Figure 3. The hierarchical architecture of the research is proposed in this paper. Issues related to
virtualized network functions are discussed in [53–61], while issues related to network slicing are
covered in [62–71]. In addition, Refs. [72–76] discusses topics related to containers, and [77–81]
discusses issues related to resource management with software.

There are four main contributions to this paper:

(1) We review the latest developments in cloud native technology combined with mobile
communication resource allocation.

(2) We categorize the existing literature from various perspectives, including core net-
works, service applications, and different technologies.

(3) We will compare and analyze recent works and discuss their strengths and weaknesses
one by one.

(4) We discuss open issues and challenges in resource allocation for cloud native combined
with 5G and unify crucial future research directions.

This paper is organized as follows: Section 2 discusses virtualized network functions
and network slicing for resource management in cloud native mobile computing. Section 3
extends resource management to container and software or network architecture. Section 4
provides some critical future research directions for the cloud native subject. We explain
the pertinent technologies by carefully selecting the most relative papers in the literature.
Finally, Section 5 is the conclusion of this paper.

2. Resource Management of Cloud Native Mobile Computing with RAN

For the 5G cloud native resource management technology, this section will compare
and discuss the current related research. This paper will discuss and analyze it in four
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parts: network virtualization, network slicing, containerization, and software architecture.
First, we see network virtualization of the 5G core network as an important part because
network virtualization can significantly reduce the cost of infrastructure and the difficulty
of resource management.

2.1. Resource Management for NFV
2.1.1. The Main Challenges with NFV

There are many challenges to implementing NFV, such as portability, performance
trade-off, management and orchestration, security, and network stability. Although, in
addition, the cloud native network function has been developed due to the advancement
of containerization technology, which has improved the system’s higher flexibility and
scalability, some problems still need to be solved.

2.1.2. The Conventional Solutions NFV

Table 1 shows the comparison of literature on resource management with NFV. In
the 5G system, meeting the end QoS is a big challenge. In order to meet the diverse
needs of next-generation networks, 5G systems need to be flexible and programmable.
On the other hand, meeting end-users’ quality of experience (QoE) is another critical
challenge. Operators must configure hardware components according to the demand
during peak hours to ensure the ultra-low latency and high dynamics of mobile traffic.
However, during off-peak hours, idle components result in wasted energy, processing, and
network resources. We can solve these problems by adopting NFV. Ref. [53] proposes
a QoE-aware elastic execution scheme. The scheme adds the following functions: QoE
assessor (QA), Elasticity decision maker (EDM), and resource usage monitor (RUM). These
functions are integrated with the service orchestrator and service manager of architecture.
The proposed scheme is compatible with existing ETSI NFV architecture and can decide
autonomously when and to what extent to implement elasticity. NFV decouples network
functions’ software components from their respective dedicated hardware. It can optimize
the cost of deployment and simplify lifecycle management. Ref. [54] provides a cloud
native architecture for mobile cloud networks and is used to implement the designed
CN-VNF, a scalable framework for cloud native VNF design.

Configuring cloud native network functions (CNFs) on the edge cloud to build an
independent private 5G network can reduce operating costs. However, due to the edge
cloud’s limited computing power and data storage resources, this distributed processing
method will cause CNFs to generate higher backhaul control traffic than legacy NFs.
Therefore, to effectively manage CNFs, lightweight control plane management schemes
should be designed for a stand-alone private 5G network. Ref. [55] proposes a cloud native
network function placement algorithm based on deep Q-network to minimize the cost of
backhaul control traffic overhead. Ref. [56] is an extension of the same topic by the same
authors and provides a more detailed performance analysis.

Microservices, such as containerized network functions, must process functions with
flexible low latency. In addition, to reduce costs, the computing environment should
conserve energy. Ref. [57] develops an energy-adaptive network functions framework
based on XDP monitoring called X-MAN for managing CPU operational states. In [58],
the authors examine cloud native 5G core and its design principles, investigate network
slicing and MEC to deliver 5G service-centric use cases, and envision cloud native 5G
microservices potential use cases for network slicing. Ref. [59] proposed an intrinsic cloud
security (iCS) framework that combines a cloud native environment with a paradigm of
moving target defense and mimic defense to achieve secure and reliable network slicing.
However, the defensive effectiveness of the system can be severely affected by component
heterogeneity, mutation, and recombination strategies. Therefore, a heterogeneous evalu-
ation mechanism needs to be established. Ref. [60] further explores the iCS system that
supports heterogeneous resource pool management, which can flexibly set the redundancy
rate according to different cost constraints and security levels.
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Table 1. Comparison of literature on resource management with NFV.

Ref. Year Proposed Method Tools Problem

[53] 2016 Autonomic scaling Ubuntu-
14.04.03 LTS

Optimal resource
utilization and
resource scaling
decisions

[54] 2018
5GaaS service
architecture
and 5G CN-VNF
framework

OAI
Review current
NFV management
solutions

[55] 2020 DQN based
algorithm

Not described Minimize back-haul
control traffic cost

[56] 2022 DQN based
algorithm

Not described
Minimize back-haul
control traffic cost,
CNF launching costs,
and CNF operating
costs

[57] 2022
Monitoring
energy-adaptive
network functions
framework

Ubuntu-
20.04 LTS
Cisco TRex
Docker
XDP-Tools
Turbostat

Reducing power
consumption

[58] 2021
Envisions a
cloud native
5G microservices
architecture

Kubernetes
Cloud native 5G
core study and
design

[59] 2021
Intrinsic Cloud
Security
framework

DPDK Security

[60] 2022
Intrinsic Cloud
Security
framework with
heterogeneous
resource pool
management

Not described Security

[61] 2021 Automate the load
balancer deployment

DPDK
Cisco TRex

Load balancer
deployment

In [61], the author focuses on server load balancing for cloud native architectures and
implements a load balancer to manage containerization through Kubernetes easily. This
load balancer distributes traffic using eBPF/XDP in the Linux kernel.

2.2. Resource Management for Network Slicing
2.2.1. The Main Challenges with Network Slicing

Network slicing technology meets the diversity and flexibility requirements of 5G
networks. It spans the three domains of the transport network, radio access network,
and core network and supports customized network services by providing on-demand
network slice instances (NSI). However, network slicing technology faces many challenges,
like achieving dynamic slice creation and management to maximize benefits, mobility
management to meet real-time services, and security issues due to resource sharing between
slices. These problems can be summed up as resource management problems encountered
in cloud native that combine with network slicing.

2.2.2. The Conventional Solutions Network Slicing

The past mobile networks paradigm will not apply to 5G networks because of the
diverse service requirements (eMBB, URLLC, and mMTC). With the technology of NFV,
network slicing can use common network infrastructure to meet these different application
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and service requirements. Table 2 summarizes and compares the current research on
resource management of network slicing.

Table 2. Comparison of literature on resource management with network slicing.

Ref. Year Proposed Method Tools Problem

[62] 2017
A cloud native
approach to
network slicing

Linux VMs
Djiango
Nginx
PostgreSQL
OpenStack
Apache projects

Lifecycle management

[63] 2021 Validates the
MATILDA platform

MATILDA Lifecycle management

[64] 2021
Uses LSTM
RNN model
to predict future
resource utilization

OpenStack
OAI
IBN tool

Lifecycle management

[65] 2018
Alternating direction
method of
multipliers algorithm

Not described Resource allocation

[66] 2021
Uses LSTM
RNN model
to predict network
load in the future

OAI
Kubernetes

Resource allocation
for RAN

[67] 2021
Designs a
service-oriented
RAN architecture

OAI
Mosaic5G

Resource allocation
for RAN

[68] 2021 DRL algorithm Kubernetes
Resource allocation
and minimize slice
migration overhead

[69] 2022
A network slicing
management
architecture for
IIoT applications

Not described Network slicing
management

[70] 2021
Uses components of the
slice collection agents
in a new framework

OAI
Openshift
Kubernetes

Network slices
monitoring

[71] 2018
Proposes a management
and orchestration
controller for
slice creation

NextEPC
CommAgility-
SmallCellSTACK-
eNodeB

Service guarantees

In [62], the authors introduce cloud native used in the network slicing method that
leverages cloud technologies such as NFV, SDN, micro-services, containerization, and cloud
native applications. The authors highlight the three-stage lifecycle management of cloud
native network slices (design and creation, orchestration and activation, and analytics
and optimization) and present cloud native network slicing in a proof-of-concept system.
Similarly, for lifecycle management, Ref. [63] gives the platform MATILDA based on cloud
native/microservice development principles and introduces an Industry 4.0 application.
MATILDA presents a holistic approach to processing the lifecycle of applications’ design,
orchestration, deployment, and development in a 5G environment. Ref. [64] proposes a
network slice lifecycle management solution that can automate the configuration process
and perform network slice management and orchestration. The proposed intent-based
networking platform uses the long–short time memory (LSTM) RNN model to predict the
utilization of future resources.

Ref. [65] proposes a lightweight and flexible network slicing resource allocation frame-
work using cloud native architecture. To ensure the fairness of traffic and computation, the
author designed a resource allocation algorithm based on the multiplier alternating direc-
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tion method by closely coordinating slice owners, cloud providers, and network controllers,
allowing the real-time configuration and automatic scaling of network slices. Monolithic
non-configurable hardware devices have dominated RAN in the past few generations of
mobile network access. The cloud native approach can even be extended to the RAN
through the widespread application of virtualization. Ref. [66] develops and evaluates a
machine learning model using an LSTM RNN to predict network load in the future and uses
it to decide proactive resource allocation for RAN and core networks. In [67], the author
modifies the existing RAN architecture and designs a service-oriented one. It implements
scheduling algorithms for multiple slices and the algorithms for user scheduling of the
intra-schedulers and inter-schedulers for scheduling micro-SDK.

In the network architecture of network slicing, when encountering mobile events
caused by end users, the slice and its allocated resources and services need to be reconfig-
ured for network slicing. Interdependent services and resources must be migrated when
slices move between service areas to reduce system overhead and ensure low commu-
nication latency for users. However, migrating sliced service instances is a challenging
process. Ref. [68] design two algorithms based on deep reinforcement learning (DRL) to
select and allocate bandwidth resources and minimize slice migration overhead. Ref. [69]
proposes a network-slicing management architecture for IIoT applications such as smart
energy, transportation, and factories. In addition, it studies the orchestration architecture of
network slice for the IIoT applications for network slicing management and orchestration.

Many resources are included for network slicing in 5G, such as RAN, memory, and
computing. Therefore, how to achieve optimal resource management by monitoring
resources belonging to these technical domains is an important issue. Ref. [70] introduces
a scalable new monitoring framework for 5G network slicing, which employs a novel
communication protocol for data collection and supports multi-tenancy in a cloud native
environment. Ref. [71] focuses on providing service guarantees, i.e., QoS parameters
such as data rate, delay, and slice isolation. To this end, a management and orchestration
controller for slice creation is proposed to enable slice tenants to control and manage their
respective network slices.

3. Resource Management of Cloud Native Mobile Computing with Software

We discuss cloud native application service resource management in two parts. The
first part is the resource management of containerized technology applications. Next is
completed by adjusting the cloud native architecture.

3.1. Resource Management for Container
3.1.1. The Main Challenges with Container

Cloud native is a highly feasible and futuristic architecture in 5G mobile commu-
nications. In addition to assisting core network virtualization and network slicing, the
introduction of containerization technology makes the overall deployment faster, and be-
cause each container does not affect the operation of other containers, it is easier to manage
and troubleshoot.

At present, the most used container technology is the use of Kubernetes for erection.
However, since the container’s resources still depend on the resources supported by the
physical machine, managing the container resources is still one of the key points to consider.
In the following subsections, we will focus on the current research on the resource allocation
of containers to discuss and compare their differences one by one.

3.1.2. The Conventional Solutions for Container

Although there have been many studies on cloud native resource management, there
are fewer resource management studies on containerization. Most studies still focus on
network virtualization and network slicing technologies. Hence, we will organize the
current container and microservice management articles to discuss. We summarize and
compare the current research with the container for resource management in Table 3.
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Considering the cloud native performance in [72], the authors propose using a monitoring
system to collect real-time resource usage for managing containers or microservices. At
the same time, they also calculate the completion time of containerized big data and deep
learning applications on Docker and Kubernetes platforms, respectively. Because multiple
workers are usually used as computing nodes in a native cloud environment, the container
placement strategies will have different performance results. In Docker Swarm, a new
container is added to the node with the fewest running containers, a container is placed
on the entire node in the cluster, or a worker is randomly selected to build a container. In
Kubernetes, a scoring algorithm is usually used, and the most suitable node is determined
according to various factors, such as available resources. By using this method, it can
reduce the time to completion by changing the default configuration. Since cloud native
is a flexible and dynamic system, continuously monitoring the microservice system is a
significant challenge.

Table 3. Comparison of literature on resource management with containers.

Ref. Year Proposed Method Tools Problem

[72] 2020 Monitoring system and
analyze completion times

Docker and
Kubernetes

Performance analysis and
container strategies

[73] 2018 Quantized MPI Docker and
Singularity

Performance analysis

[74] 2019 Self-adaptive
resource sharing

Kubernetes Vertical container
expansion

[75] 2018 Use iperf3 for analysis AWS Containers and
performance

[76] 2018 CloudRanger IBM Bluemix Error detection

The number of microservices will increase or decrease depending on the situation, and
the workload will also be affected [76]. In addition, containerization technology will also
seriously affect the overall performance. Cloud native can stop, restart, or move a container
from an existing node to another node. This action will lead to weak contextual correlation,
making it difficult to track the state of the container. Therefore, to meet this challenge, they
propose a new system architecture: CloudRanger. This method uses the dynamic causal
relationship analysis to construct the influence diagram between applications. Meanwhile,
considering the situation of diagnosing the occurrence of events in the cloud native system,
they also use the second-order random walk-based heuristic investigation algorithm to
identify the service in question.

In order to facilitate the management and control of container resources and perfor-
mance, the performance analysis of Docker and Singularity on Chameleon bare metal nodes
is introduced in [73]. The performance indicators are CPU, memory, and delay sensitive,
respectively. Docker can communicate with InfiniBand through RDMA communication,
the mechanism by which the hardware does the mapping. Next, they also present the
analysis of parallel workload mapping elements. Through this research, we can judge how
to choose the appropriate workload container technology and method when needed. At
the same time, they also use Docker to orchestrate containers, including a container for
each host to have the same IP but different ports. Then, the second orchestration method is
to use Docker Swarm to create an overlay network that spans multiple nodes so that all
containers under the same subnet address can be assigned a separate IP. The third method
uses numerous containers for each node to connect to the public overlay network. Since
microservices will affect workload changes, operators providing cloud services can use
vertical container scaling, adding or removing data.

To avoid violating service level objectives (SLOs) and increasing the utilization of extra
resources, Podolskiy et al. [74] first let the system learn the correlation model between
the SLO and workload, service level indicator, and resource limitation. Then, to meet
the limit of the SLO, they obtain the most suitable solution through optimization and the
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brute-force attack. Finally, to reduce its resource consumption, they use this solution to
scale the container to achieve effective resource management vertically.

Since containerization technology is continuously used in cloud native, we can deploy
the overall system more flexibly. Furthermore, according to [75], they point out that a
container network between hosts is composed of any containerized software system on
multiple hosts. Therefore, although much research has conducted in-depth discussion
and evaluation of the performance of the local network, there needs to be a network
performance evaluation between the container networks. Hence, they use iperf3 to evaluate
the network performance and system of the public cloud for different container networks.
Ultimately, they find that the overall performance difference would be significant when
transferring data volumes greater than 5Gbps and requiring network encryption. We can
certainly use this conclusion for resource management strategies.

3.2. Resource Management for Software Architecture
3.2.1. The Main Challenges with Software Architecture

In a cloud native environment, it will achieve flexibility and highly reliable scheduling
by shutting down, adding or moving containers, and using microservices; this will cause
management difficulties. On the other hand, cloud native adaptive adjustment methods
and architectures have always been the research focus. Using adaptive architectures can
effectively improve system performance and resource management.

3.2.2. The Conventional Solutions for Software Architecture

In this subsection, we will introduce research on resource management by utilizing
different architectures, and Table 4 compares literature on resource management with
software architecture. In [77], considering that the 5G cloud native architecture can reduce
its deployment cost by virtualizing the core network, the authors propose a scalable cloud
native architecture called a cloud native solution for a mobility management entity. This
architecture is mainly a data production center based on a microservice architecture. The
advantages of this architecture are high scalability and support for automatically scaling up
and down the required microservices, enabling the overall system to achieve load balancing.
They first extend the NFV-LTE-EPC framework and then use the open-source orchestrator
Kubernetes and the Docker container platform to complete the goal of network function
virtualization. Then, use the monitoring tool Prometheus to obtain network information. In
order to achieve load balancing, they also design an L7 load balancer for this architecture.
Using this, it can store the current state of MME in centralized data. It is better than
the traditional L4 load balancer regarding throughput, load balancing, adaptability, and
computing resources.

Table 4. Comparison of literature on resource management with software architecture.

Ref. Year Proposed Method Tools Problem

[77] 2017 CNS-MME Docker and
Kubernetes

Load balance

[78] 2020 AMoCNA VM Self-management
[79] 2019 Kubow Kubernetes Self adaptive
[80] 2020 MicroRCA Kubernetes Performance diagnosis

for microservices
[81] 2020 Use MLP to

predict load
Not described Workloads for

ML

On the other hand, Ref. [78] also defines the self-management requirements of cloud
native applications in detail, and they also realize the automatic function through ad-
vanced strategies in the research. Its primary method is implementing the application
self-management framework (AMoCNA) through model-driven architecture. At the same
time, this architecture is divided into five layers for separate discussions: instrumentation
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layer, observation layer, management layer, inference layer, and control layer. When using
this architecture, the cloud native management’s complexity can be effectively reduced,
making resource management more efficient and straightforward. Since Kubernetes is
the most commonly used open-source software for cloud native architecture, in [79], the
authors propose an adaptive service system based on this software called Kubow. Its
primary implementation method is to complete through customization and the Rainbow
adaptive framework so that this system can run on Docker containers and Kubernetes. To
integrate Kubow and Kubernetes, they first define the architecture through Acme based
on containerized services and connector collections. Then, the authors describe it through
two component types, DeploymentT and ServiceT, and two connector types, LabelSelector-
ConnectorT and ServiceConnectorT. It can perform service and deployment through two
component types, and we can understand the relationship established between different
services and resources in Kubernetes by using two connector types. In addition, they
also mention that according to different application model architectures, the definition of
Kubow will change, that is, monitoring, policy, change, etc.

In [80], microservices are discussed in detail. However, because it will frequently
update microservices and infrastructure in cloud native, it will encounter considerable
challenges in meeting the problem diagnosis in self-adaptation. To solve this problem, they
propose MicroRCA technology. This method is based on the performance symptoms of
the program and the corresponding resource utilization rate to judge; that is to say, using
this method does not require program detection. At the same time, because this method
will construct an exception propagation graph across services and machines, it can be well
adapted to different types of microservices and simplify overall resource management.

Machine learning, deep learning, and reinforcement algorithms have been increas-
ing in recent years. Machine learning allows researchers or engineers to quickly make
predictions and approximate optimal answers to research-related questions. However,
considering that the current machine learning uses the mighty computing power of the
cloud for learning, at the same time, due to changes in the software service architecture,
machine learning is gradually moving to run on cloud native. The flexible deployment and
scalability of cloud native solve the resources that machine learning requires. However,
although cloud native features and advantages can assist machine learning operations,
they still encounter load-balancing problems. In [81], to solve this problem, they first use
the AI4DL framework to define the workload, observe the resource consumption status,
and then use the temporal multi-layer perceptron to make predictions for different types
of workloads in the container. At the same time, they also propose a predictive vertical
autoscaling strategy to resize containers dynamically. Considering the high dynamics of
cloud native and microservices, if the container is adjusted, even if the predicted result is a
small change, it will cause unnecessary operations and management difficulties. Therefore,
the container adjustment will only occur when a significant change is predicted.

4. The Challenge and Future Trends

The software architecture is gradually changing from a single to a microservice ar-
chitecture. Many containerization technologies are applied to cloud native, and our lives
are progressively evolving. On the other hand, it will also transform the traditional core
network into a virtual core network through the maturity of technologies, such as con-
tainerization technology, microservices, network slicing, and virtualized network functions.
In the evolution of these technologies, cloud native has played a significant role. Although
we compared and discussed resource management for virtualized network functions, net-
work slicing, container and microservice management, and adaptive architecture in cloud
native edge computing, these are only part of cloud native. Cloud native still has several
significant challenges to overcome. First, because cloud native provides flexibility and
scalability for deployment, the overall management and control will be more complicated
than traditional cloud.
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In the view of microservice, it will be deleted or added over time, seriously affecting
the system performance and difficulty in detecting faults. At the same time, due to the
use of containerization technology, the opening/closing of containers and moving to other
nodes all require a comprehensive strategy and management. In addition, we still need
to consider issues, such as limited resource control, scheduling, and automatic scaling for
containerization technology. The tools or methods with the ability to monitor data are
widely used in most studies to solve the problem of the cloud native platform [82,83].

Virtualization technology with virtual machines (VMs) is the foundation of cloud com-
puting. It provides flexible and resilient information technology (IT) infrastructure for cloud
services. However, using VMs may have high energy consumption and waste computing
resources due to running the same operations by various guest operating systems [84].
Given this, they introduced container technology to solve the energy consumption and
computing resource-wasting problem. In addition, container technology improves resource
usage efficiency by sharing the same infrastructure with the same operating system. Cloud
native environments can leverage hardware acceleration to offload 5G RAN functions.
However, the software implementation of low-density parity-check (LDPC) decoding in
the 5G physical layer is challenging due to its iterative and complex processing. Therefore,
it may need to consume very high power to achieve the expected performance of 5G mobile
networks. Ref. [85] proposed a dynamically activating LDPC decoding on Kubernetes
field-programmable gate array (FPGA) method to accelerate the 5G RAN distributed unit
(DU) stack of cloud native.

Next, the cloud native platform is also vulnerable to attacks due to its characteristics;
hence, security issues still need attention. In [86], the SmartX Multi-tire security is proposed.
This approach will leverage monitoring, visualization, and filtering network topology
traffic at all levels for robust network security. Considering the gradual expansion of
security vulnerabilities due to containerization technology, static security mechanisms are
insufficient to ensure the security of data or systems; therefore, internal security mechanisms
must also be considered. Meanwhile, the IoT will be the primary trend of most network
applications in the future, generating many new microservices. These microservices need to
be distinguished according to different application scenarios, for example, how to organize
themselves or serve to explore. At the same time, whether to utilize the cloud or edge
computing will also have to be considered.

5. Conclusions

With the development of mobile communication and smart devices, 5G communi-
cation has gradually become a new focus. According to the 5G mobile communication
architecture, it will be a heterogeneous network with high complexity and complex manage-
ment; it can access different network types simultaneously. For this reason, operators need
a cloud environment that they can dynamically adjust or a new kind of cloud architecture
closer to the end of the network. Fortunately, the software architecture has gradually
moved closer to microservices and containerization in recent years. The core network
used by 5G also introduces these technologies to virtualize core network functions and
implement network slicing on the radio access network, gradually realizing the cloud
native architecture. This paper conducts a detailed analysis and comparison of resource
management for cloud native edge computing. We discussed resource management with
different technologies: virtualized network functions, network slicing, containerization
technology, and software architecture. We also proposed to readers the future research
trends of cloud native and other challenges in this article, hoping that more researchers
will pay attention to cloud native issues.
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