Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = salcaprozate sodium

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 676 KiB  
Case Report
Carnitine Deficiency Caused by Salcaprozic Acid Sodium Contained in Oral Semaglutide in a Patient with Multiple Acyl-CoA Dehydrogenase Deficiency
by Yasuko Mikami-Saito, Masamitsu Maekawa, Masahiro Watanabe, Shinichiro Hosaka, Kei Takahashi, Eriko Totsune, Natsuko Arai-Ichinoi, Atsuo Kikuchi, Shigeo Kure, Hideki Katagiri and Yoichi Wada
Int. J. Mol. Sci. 2025, 26(7), 2962; https://doi.org/10.3390/ijms26072962 - 25 Mar 2025
Viewed by 884
Abstract
Carnitine plays an essential role in maintaining energy homeostasis and metabolic flexibility. Various medications, such as pivalate-conjugated antibiotics, valproic acid, and anticancer agents, can induce carnitine deficiency, inhibit the utilization of fatty acid, and contribute to the development of hypoglycemia. No studies have [...] Read more.
Carnitine plays an essential role in maintaining energy homeostasis and metabolic flexibility. Various medications, such as pivalate-conjugated antibiotics, valproic acid, and anticancer agents, can induce carnitine deficiency, inhibit the utilization of fatty acid, and contribute to the development of hypoglycemia. No studies have linked oral semaglutide to carnitine deficiency. Herein, we report the case of a 34-year-old male patient with multiple acyl-CoA dehydrogenase deficiency who developed carnitine deficiency attributable to salcaprozic acid sodium (SNAC) in oral semaglutide. The patient was diagnosed with type 2 diabetes mellitus at 32 years of age and was treated with semaglutide injections. Hypoglycemic symptoms appeared after switching to oral semaglutide, and the mean levels of blood-free carnitine significantly decreased. Liquid chromatography–tandem mass spectrometry analysis revealed a peak corresponding to the SNAC–carnitine complex (m/z 423.24) in the urine exclusively during the oral administration of semaglutide. The MS/MS spectra at m/z 423.24 contained peaks consistent with those of the SNAC and carnitine product ions. Our results suggest that through complexation with carnitine, SNAC may induce carnitine deficiency. Healthcare providers should monitor for carnitine deficiency when administering SNAC-containing medications to at-risk individuals. Furthermore, this case can raise more significant concerns about the potential impact of pharmaceutical excipients like SNAC on metabolic pathways. Full article
(This article belongs to the Special Issue Molecular Therapeutics for Diabetes and Related Complications)
Show Figures

Figure 1

35 pages, 2405 KiB  
Review
Gastrointestinal Permeation Enhancers for the Development of Oral Peptide Pharmaceuticals
by Jae Cheon Kim, Eun Ji Park and Dong Hee Na
Pharmaceuticals 2022, 15(12), 1585; https://doi.org/10.3390/ph15121585 - 19 Dec 2022
Cited by 34 | Viewed by 14521
Abstract
Recently, two oral-administered peptide pharmaceuticals, semaglutide and octreotide, have been developed and are considered as a breakthrough in peptide and protein drug delivery system development. In 2019, the Food and Drug Administration (FDA) approved an oral dosage form of semaglutide developed by Novo [...] Read more.
Recently, two oral-administered peptide pharmaceuticals, semaglutide and octreotide, have been developed and are considered as a breakthrough in peptide and protein drug delivery system development. In 2019, the Food and Drug Administration (FDA) approved an oral dosage form of semaglutide developed by Novo Nordisk (Rybelsus®) for the treatment of type 2 diabetes. Subsequently, the octreotide capsule (Mycapssa®), developed through Chiasma’s Transient Permeation Enhancer (TPE) technology, also received FDA approval in 2020 for the treatment of acromegaly. These two oral peptide products have been a significant success; however, a major obstacle to their oral delivery remains the poor permeability of peptides through the intestinal epithelium. Therefore, gastrointestinal permeation enhancers are of great relevance for the development of subsequent oral peptide products. Sodium salcaprozate (SNAC) and sodium caprylate (C8) have been used as gastrointestinal permeation enhancers for semaglutide and octreotide, respectively. Herein, we briefly review two approved products, Rybelsus® and Mycapssa®, and discuss the permeation properties of SNAC and medium chain fatty acids, sodium caprate (C10) and C8, focusing on Eligen technology using SNAC, TPE technology using C8, and gastrointestinal permeation enhancement technology (GIPET) using C10. Full article
(This article belongs to the Special Issue Feature Reviews in Pharmaceutical Technology)
Show Figures

Figure 1

21 pages, 1614 KiB  
Review
Intestinal Permeation Enhancers for Oral Delivery of Macromolecules: A Comparison between Salcaprozate Sodium (SNAC) and Sodium Caprate (C10)
by Caroline Twarog, Sarinj Fattah, Joanne Heade, Sam Maher, Elias Fattal and David J. Brayden
Pharmaceutics 2019, 11(2), 78; https://doi.org/10.3390/pharmaceutics11020078 - 13 Feb 2019
Cited by 178 | Viewed by 29954
Abstract
Salcaprozate sodium (SNAC) and sodium caprate (C10) are two of the most advanced intestinal permeation enhancers (PEs) that have been tested in clinical trials for oral delivery of macromolecules. Their effects on intestinal epithelia were studied for over 30 years, yet [...] Read more.
Salcaprozate sodium (SNAC) and sodium caprate (C10) are two of the most advanced intestinal permeation enhancers (PEs) that have been tested in clinical trials for oral delivery of macromolecules. Their effects on intestinal epithelia were studied for over 30 years, yet there is still debate over their mechanisms of action. C10 acts via openings of epithelial tight junctions and/or membrane perturbation, while for decades SNAC was thought to increase passive transcellular permeation across small intestinal epithelia based on increased lipophilicity arising from non-covalent macromolecule complexation. More recently, an additional mechanism for SNAC associated with a pH-elevating, monomer-inducing, and pepsin-inhibiting effect in the stomach for oral delivery of semaglutide was advocated. Comparing the two surfactants, we found equivocal evidence for discrete mechanisms at the level of epithelial interactions in the small intestine, especially at the high doses used in vivo. Evidence that one agent is more efficacious compared to the other is not convincing, with tablets containing these PEs inducing single-digit highly variable increases in oral bioavailability of payloads in human trials, although this may be adequate for potent macromolecules. Regarding safety, SNAC has generally regarded as safe (GRAS) status and is Food and Drug Administration (FDA)-approved as a medical food (Eligen®-Vitamin B12, Emisphere, Roseland, NJ, USA), whereas C10 has a long history of use in man, and has food additive status. Evidence for co-absorption of microorganisms in the presence of either SNAC or C10 has not emerged from clinical trials to date, and long-term effects from repeat dosing beyond six months have yet to be assessed. Since there are no obvious scientific reasons to prefer SNAC over C10 in orally delivering a poorly permeable macromolecule, then formulation, manufacturing, and commercial considerations are the key drivers in decision-making. Full article
(This article belongs to the Special Issue Transmucosal Absorption Enhancers in the Drug Delivery Field)
Show Figures

Graphical abstract

Back to TopTop