Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = salbutamol-4′-O-sulfate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5935 KB  
Article
Development of an HPLC-MS/MS Method for Chiral Separation and Quantitation of (R)- and (S)-Salbutamol and Their Sulfoconjugated Metabolites in Urine to Investigate Stereoselective Sulfonation
by Lukas Corbinian Harps, Annika Lisa Jendretzki, Clemens Alexander Wolf, Ulrich Girreser, Gerhard Wolber and Maria Kristina Parr
Molecules 2023, 28(20), 7206; https://doi.org/10.3390/molecules28207206 - 21 Oct 2023
Cited by 1 | Viewed by 3252
Abstract
The aim of this study was to develop and optimize a chiral HPLC-MS/MS method for quantitative analysis of (R)-/(S)-salbutamol and (R)-/(S)-salbutamol-4′-O-sulfate in human urine to allow for bioanalytical quantitation of the targeted analytes [...] Read more.
The aim of this study was to develop and optimize a chiral HPLC-MS/MS method for quantitative analysis of (R)-/(S)-salbutamol and (R)-/(S)-salbutamol-4′-O-sulfate in human urine to allow for bioanalytical quantitation of the targeted analytes and investigations of stereoselectivity in the sulfonation pathway of human phase Ⅱ metabolism. For analytical method development, a systematic screening of columns and mobile phases to develop a separation via enantiomerically selective high performance liquid chromatography was performed. Electrospray ionization settings were optimized via multiple-step screening and a full factorial design-of-experiment. Both approaches were performed matrix-assisted and the predicted values were compared. The full factorial design was superior in terms of prediction power and knowledge generation. Performing a longitudinal excretion study in one healthy volunteer allowed for the calculation of excretion rates for all four targeted analytes. For this proof-of-concept, either racemic salbutamol or enantiopure levosalbutamol was administered perorally or via inhalation, respectively. A strong preference for sulfonation of (R)-salbutamol for inhalation and peroral application was found in in vivo experiments. In previous studies phenol sulfotransferase 1A3 was described to be mainly responsible for salbutamol sulfonation in humans. Thus, in vitro and in silico investigations of the stereoselectivity of sulfotransferase 1A3 complemented the study and confirmed these findings. Full article
(This article belongs to the Special Issue Advances in Chiral Analysis)
Show Figures

Figure 1

24 pages, 4875 KB  
Article
Biosynthesis of Salbutamol-4′-O-sulfate as Reference for Identification of Intake Routes and Enantiopure Salbutamol Administration by Achiral UHPLC-MS/MS
by Annika Lisa Jendretzki, Lukas Corbinian Harps, Yanan Sun, Felix Bredendiek, Matthias Bureik, Ulrich Girreser, Xavier de la Torre, Francesco M. Botrè and Maria Kristina Parr
Separations 2023, 10(8), 427; https://doi.org/10.3390/separations10080427 - 28 Jul 2023
Cited by 1 | Viewed by 5686
Abstract
The aim of the study was a comprehensive and quantitative determination of salbutamol and its sulfoconjugated major metabolite in urine samples using achiral ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Therefore, salbutamol-4′-O-sulfate was biosynthesized as a reference using genetically modified fission [...] Read more.
The aim of the study was a comprehensive and quantitative determination of salbutamol and its sulfoconjugated major metabolite in urine samples using achiral ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Therefore, salbutamol-4′-O-sulfate was biosynthesized as a reference using genetically modified fission yeast cells, and the product was subsequently characterized by NMR and HRMS. In competitive sports, salbutamol is classified as a prohibited drug; however, inhalation at therapeutic doses is permitted with a maximum allowance of 600 µg/8 h. In contrast, the enantiopure levosalbutamol is prohibited under any condition. For analytical discrimination, the amount of salbutamol and its main metabolite excreted in the urine was studied. As proof of concept, a longitudinal study in one healthy volunteer was performed in order to investigate excreted amounts and to study potential discrimination using achiral chromatography. Discrimination of administration of racemic salbutamol or the enantiopure levosalbutamol was not achieved by solely analyzing salbutamol as the parent compound. However, a distinction was possible by evaluation of the proportion of salbutamol-4′-O-sulfate in relation to salbutamol. Therefore, reference material of metabolites is of great importance in doping control, especially for threshold substances. Full article
Show Figures

Figure 1

23 pages, 2691 KB  
Article
Quantitation of Formoterol, Salbutamol, and Salbutamol-4′-O-Sulfate in Human Urine and Serum via UHPLC-MS/MS
by Lukas C. Harps, Daniel A. Bizjak, Ulrich Girreser, Martina Zügel, Jürgen M. Steinacker, Patrick Diel and Maria Kristina Parr
Separations 2023, 10(7), 368; https://doi.org/10.3390/separations10070368 - 22 Jun 2023
Cited by 10 | Viewed by 3123
Abstract
The adrenergic beta-2 agonists formoterol and salbutamol are used for the treatment of asthma and COPD but are also misused in sports competitions. Therefore, they are included in WADA regulations. Both drugs are mainly excreted in urine after administration via inhalation. A four-armed, [...] Read more.
The adrenergic beta-2 agonists formoterol and salbutamol are used for the treatment of asthma and COPD but are also misused in sports competitions. Therefore, they are included in WADA regulations. Both drugs are mainly excreted in urine after administration via inhalation. A four-armed, double-blind cross-over clinical trial was conducted involving endurance-trained participants (12 females and 12 males). Inhalation dosages of 36 μg formoterol, 1200 μg salbutamol, a combination of both, or a placebo were administered before exercise. Serum and urine were collected after exercise and 3 and 24 h after administration. Here, we show the successful quantitation of formoterol, salbutamol, and its phase II metabolite salbutamol-4′-O-sulfate in all urine and serum samples using ultra-high performance liquid chromatography–tandem mass spectrometry. In the serum analysis, results of up to 14.2 pg/mL formoterol, 10.0 ng/mL salbutamol, and 21.4 ng/mL salbutamol-4′-O-sulfate (calculated as salbutamol equivalent) were found. In urine, maximum concentrations (after deglucuronidation) were 17.2 ng/mL formoterol, 948.5 ng/mL salbutamol, and 2738.5 ng/mL salbutamol-4′-O-sulfate. Sex-specific differences in serum concentrations as well as in urinary excretion were observed. The results pronounce the importance of the implementation and elucidation of phase II metabolites to quantitation methods in antidoping. Full article
Show Figures

Figure 1

Back to TopTop