Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = rotating-bomb combustion calorimetry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 719 KiB  
Article
Thermochemical Characterization of Sulfur-Containing Furan Derivatives: Experimental and Theoretical Study
by Luísa M. P. F. Amaral and Manuel A. V. Ribeiro da Silva
Thermo 2025, 5(1), 11; https://doi.org/10.3390/thermo5010011 - 18 Mar 2025
Viewed by 727
Abstract
The thermochemical properties of three sulfur-containing furan derivatives, 2-furanmethanethiol, furfuryl methyl sulfide, and methyl 2-methyl-3-furyl disulfide, were investigated using experimental and theoretical methods. Standard molar enthalpies of combustion were determined by combustion calorimetry, while enthalpies of vaporization were obtained through Calvet microcalorimetry. These [...] Read more.
The thermochemical properties of three sulfur-containing furan derivatives, 2-furanmethanethiol, furfuryl methyl sulfide, and methyl 2-methyl-3-furyl disulfide, were investigated using experimental and theoretical methods. Standard molar enthalpies of combustion were determined by combustion calorimetry, while enthalpies of vaporization were obtained through Calvet microcalorimetry. These experimental results allowed for the calculation of standard molar enthalpies of formation in the gas phase at 298.15 K. Theoretical calculations using high-level quantum chemical methods (G3) were performed to complement the experimental data. A comparison between experimental and theoretical values revealed good agreement, validating the computational approach. This study enhances the understanding of the energetic properties of sulfur furan derivatives, contributing reliable thermochemical data to existing databases and aiding in the development of predictive models for related molecular systems. Full article
Show Figures

Figure 1

20 pages, 4201 KiB  
Article
Separation and Characterization of Plastic Waste Packaging Contaminated with Food Residues
by Svetlana Tretsiakova-McNally, Helen Lubarsky, Ashlene Vennard, Paul Cairns, Charlie Farrell, Paul Joseph, Malavika Arun, Ian Harvey, John Harrison and Ali Nadjai
Polymers 2023, 15(13), 2943; https://doi.org/10.3390/polym15132943 - 4 Jul 2023
Cited by 3 | Viewed by 3375
Abstract
In this paper, we present the development of a novel processing technology to tackle hard-to-recycle plastic packaging waste contaminated with food residues. The proof-of-concept (POC) technology can effectively separate food residual amounts from plastic waste materials to a level acceptable for further re-use [...] Read more.
In this paper, we present the development of a novel processing technology to tackle hard-to-recycle plastic packaging waste contaminated with food residues. The proof-of-concept (POC) technology can effectively separate food residual amounts from plastic waste materials to a level acceptable for further re-use or recycling of the plastic packaging. To assess this technology, we have conducted spectroscopic, thermal, and calorimetric characterizations of the obtained fractions, such as cleaned mixed plastics (CMP), food waste with mixed plastics (FWMP), and a mixture of microplastics (MP). The analyses were carried out with the aid of Fourier-Transform Infrared spectroscopy (FT-IR), Thermo-Gravimetric Analysis (TGA), Microcone Combustion Calorimetry (MCC), and ‘bomb’ calorimetry. The highest ratio of CMP to FWMP and the lowest amount of MP were obtained utilizing 700 rpm blade rotational speed and 15 s residence time of contaminated plastics in a cutting mill chamber. The plastics were freed from food contamination by 93–97%, which highlights a strong potential of the POC as a solution for ‘dry-cleaning’ of similar wastes on a larger scale. The main components of the CMP fraction were low-density polyethylene (LDPE), polypropylene (PP), and polyethylene terephthalate (PET), which are recyclable plastics. The knowledge and understanding of thermal degradation behaviours and calorimetric attributes of separated fractions, determined in this study, are essential in informing the industrial players using pyrolysis as a technique for recycling plastics. Full article
(This article belongs to the Special Issue Decarbonization of Plastics)
Show Figures

Figure 1

Back to TopTop