Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = roseophage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4385 KB  
Article
Prophage Genomics and Ecology in the Family Rhodobacteraceae
by Kathryn Forcone, Felipe H. Coutinho, Giselle S. Cavalcanti and Cynthia B. Silveira
Microorganisms 2021, 9(6), 1115; https://doi.org/10.3390/microorganisms9061115 - 21 May 2021
Cited by 24 | Viewed by 5918
Abstract
Roseobacters are globally abundant bacteria with critical roles in carbon and sulfur biogeochemical cycling. Here, we identified 173 new putative prophages in 79 genomes of Rhodobacteraceae. These prophages represented 1.3 ± 0.15% of the bacterial genomes and had no to low homology [...] Read more.
Roseobacters are globally abundant bacteria with critical roles in carbon and sulfur biogeochemical cycling. Here, we identified 173 new putative prophages in 79 genomes of Rhodobacteraceae. These prophages represented 1.3 ± 0.15% of the bacterial genomes and had no to low homology with reference and metagenome-assembled viral genomes from aquatic and terrestrial ecosystems. Among the newly identified putative prophages, 35% encoded auxiliary metabolic genes (AMGs), mostly involved in secondary metabolism, amino acid metabolism, and cofactor and vitamin production. The analysis of integration sites and gene homology showed that 22 of the putative prophages were actually gene transfer agents (GTAs) similar to a GTA of Rhodobacter capsulatus. Twenty-three percent of the predicted prophages were observed in the TARA Oceans viromes generated from free viral particles, suggesting that they represent active prophages capable of induction. The distribution of these prophages was significantly associated with latitude and temperature. The prophages most abundant at high latitudes encoded acpP, an auxiliary metabolic gene involved in lipid synthesis and membrane fluidity at low temperatures. Our results show that prophages and gene transfer agents are significant sources of genomic diversity in roseobacter, with potential roles in the ecology of this globally distributed bacterial group. Full article
(This article belongs to the Special Issue Temperate Phages)
Show Figures

Figure 1

16 pages, 3344 KB  
Article
A Novel Roseosiphophage Isolated from the Oligotrophic South China Sea
by Yunlan Yang, Lanlan Cai, Ruijie Ma, Yongle Xu, Yigang Tong, Yong Huang, Nianzhi Jiao and Rui Zhang
Viruses 2017, 9(5), 109; https://doi.org/10.3390/v9050109 - 15 May 2017
Cited by 54 | Viewed by 7861
Abstract
The Roseobacter clade is abundant and widespread in marine environments and plays an important role in oceanic biogeochemical cycling. In this present study, a lytic siphophage (labeled vB_DshS-R5C) infecting the strain type of Dinoroseobacter shibae named DFL12T, which is part of [...] Read more.
The Roseobacter clade is abundant and widespread in marine environments and plays an important role in oceanic biogeochemical cycling. In this present study, a lytic siphophage (labeled vB_DshS-R5C) infecting the strain type of Dinoroseobacter shibae named DFL12T, which is part of the Roseobacter clade, was isolated from the oligotrophic South China Sea. Phage R5C showed a narrow host range, short latent period and low burst size. The genome length of phage R5C was 77, 874 bp with a G+C content of 61.5%. Genomic comparisons detected no genome matches in the GenBank database and phylogenetic analysis based on DNA polymerase I revealed phylogenetic features that were distinct to other phages, suggesting the novelty of R5C. Several auxiliary metabolic genes (e.g., phoH gene, heat shock protein and queuosine biosynthesis genes) were identified in the R5C genome that may be beneficial to the host and/or offer a competitive advantage for the phage. Among siphophages infecting the Roseobacter clade (roseosiphophages), four gene transfer agent-like genes were commonly located with close proximity to structural genes, suggesting that their function may be related to the tail of siphoviruses. The isolation and characterization of R5C demonstrated the high genomic and physiological diversity of roseophages as well as improved our understanding of host–phage interactions and the ecology of the marine Roseobacter. Full article
(This article belongs to the Special Issue Marine Viruses 2016)
Show Figures

Figure 1

Back to TopTop