Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = rocaglates

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2776 KiB  
Article
Immune Modulatory Profile of the Pateamines PatA and Des-Methyl Des-Amino PatA
by Susanne Schiffmann, Marina Henke, Sophie Brünner, Alexandre Bennett, Yassin Yagubi, Francesca Magari, Michael J. Parnham and Arnold Grünweller
Int. J. Mol. Sci. 2024, 25(21), 11430; https://doi.org/10.3390/ijms252111430 - 24 Oct 2024
Viewed by 1055
Abstract
Pateamines act as inhibitors of the RNA helicase eIF4A and exhibit antiviral and anticancer properties. Recently, we observed that inhibition of eIF4A by rocaglates affects the immune response. To investigate whether the observed immunomodulatory effects are specific to rocaglates or the inhibition of [...] Read more.
Pateamines act as inhibitors of the RNA helicase eIF4A and exhibit antiviral and anticancer properties. Recently, we observed that inhibition of eIF4A by rocaglates affects the immune response. To investigate whether the observed immunomodulatory effects are specific to rocaglates or the inhibition of eIF4A, a comprehensive study was conducted on the influence of pateamines that exhibit the same inhibitory mode of action as rocaglates on various immune cells. The effects of pateamine A (PatA) and des-methyl des-amino pateamine A (DMDA) on the expression of surface markers, release of cytokines, cell proliferation, inflammatory mediators and metabolic activity in primary human monocyte-derived macrophages (MdM), T cells and B cells were assessed. Additionally, safety and bioavailability profiles were determined. DMDA revealed almost no immunomodulatory effects within the tested concentration range of 0.5–5 nM. PatA reduced B cell activation, as shown by reduced immune globulin release and decreased chemokine release from macrophages, while T cell function remained unaffected. Both DMDA and PatA showed low permeability in Caco-2 and Calu-3 cell barrier assays and no mutagenic potential. However, 10 nM PatA exhibited genotoxic potential, as shown by the micronucleus assay. In conclusion, DMDA had a good safety profile but exhibited low permeability, whereas PatA had a poor safety profile and also low permeability. The observed immunomodulatory effects of elF4A inhibitors on B cells appear to be target-specific. Full article
(This article belongs to the Special Issue Antiviral Drugs Discovery)
Show Figures

Figure 1

27 pages, 6003 KiB  
Article
Comparing the Effects of Rocaglates on Energy Metabolism and Immune Modulation on Cells of the Human Immune System
by Susanne Schiffmann, Marina Henke, Michelle Seifert, Thomas Ulshöfer, Luise A. Roser, Francesca Magari, Hans-Guido Wendel, Arnold Grünweller and Michael J. Parnham
Int. J. Mol. Sci. 2023, 24(6), 5872; https://doi.org/10.3390/ijms24065872 - 20 Mar 2023
Cited by 7 | Viewed by 3042
Abstract
A promising new approach to broad spectrum antiviral drugs is the inhibition of the eukaryotic translation initiation factor 4A (elF4A), a DEAD-box RNA helicase that effectively reduces the replication of several pathogenic virus types. Beside the antipathogenic effect, modulation of a host enzyme [...] Read more.
A promising new approach to broad spectrum antiviral drugs is the inhibition of the eukaryotic translation initiation factor 4A (elF4A), a DEAD-box RNA helicase that effectively reduces the replication of several pathogenic virus types. Beside the antipathogenic effect, modulation of a host enzyme activity could also have an impact on the immune system. Therefore, we performed a comprehensive study on the influence of elF4A inhibition with natural and synthetic rocaglates on various immune cells. The effect of the rocaglates zotatifin, silvestrol and CR-31-B (−), as well as the nonactive enantiomer CR-31-B (+), on the expression of surface markers, release of cytokines, proliferation, inflammatory mediators and metabolic activity in primary human monocyte-derived macrophages (MdMs), monocyte-derived dendritic cells (MdDCs), T cells and B cells was assessed. The inhibition of elF4A reduced the inflammatory potential and energy metabolism of M1 MdMs, whereas in M2 MdMs, drug-specific and less target-specific effects were observed. Rocaglate treatment also reduced the inflammatory potential of activated MdDCs by altering cytokine release. In T cells, the inhibition of elF4A impaired their activation by reducing the proliferation rate, expression of CD25 and cytokine release. The inhibition of elF4A further reduced B-cell proliferation, plasma cell formation and the release of immune globulins. In conclusion, the inhibition of the elF4A RNA helicase with rocaglates suppressed the function of M1 MdMs, MdDCs, T cells and B cells. This suggests that rocaglates, while inhibiting viral replication, may also suppress bystander tissue injury by the host immune system. Thus, dosing of rocaglates would need to be adjusted to prevent excessive immune suppression without reducing their antiviral activity. Full article
(This article belongs to the Special Issue Antiviral Drug Discovery)
Show Figures

Figure 1

18 pages, 1348 KiB  
Article
In Vitro Safety, Off-Target and Bioavailability Profile of the Antiviral Compound Silvestrol
by Susanne Schiffmann, Sandra Gunne, Thomas Ulshöfer, Marina Henke, Luise A. Roser, Ann-Kathrin Schneider, Jindrich Cinatl, Dominique Thomas, Yannick Schreiber, Pia Viktoria Wagner, Arnold Grünweller and Michael J. Parnham
Pharmaceuticals 2022, 15(9), 1086; https://doi.org/10.3390/ph15091086 - 31 Aug 2022
Cited by 9 | Viewed by 5142
Abstract
We characterized the in vitro safety and bioavailability profile of silvestrol, a compound effective against various viruses, such as corona- and Ebolaviruses, with an EC50 value of about 5 nM. The cytotoxic profile of silvestrol was assessed in various cancer cell lines, [...] Read more.
We characterized the in vitro safety and bioavailability profile of silvestrol, a compound effective against various viruses, such as corona- and Ebolaviruses, with an EC50 value of about 5 nM. The cytotoxic profile of silvestrol was assessed in various cancer cell lines, as well as the mutagenic and genotoxic potential with Ames and micronuclei tests, respectively. To identify off-target effects, we investigated whether silvestrol modulates G-protein coupled receptor (GPCR) signaling pathways. To predict the bioavailability of silvestrol, its stability, permeability and cellular uptake were determined. Silvestrol reduced viability in a cell-type-dependent manner, mediated no off-target effects via GPCRs, had no mutagenic potential and minor genotoxic effects at 50 nM. Silvestrol did not disturb cell barrier integrity, showed low membrane permeability, was stable in liver microsomes and exhibited good cellular uptake. Efficient cellular uptake and increased cytotoxicity were observed in cell lines with a low expression level of the transport protein P-glycoprotein, the known efflux transporter of silvestrol. In conclusion, silvestrol showed low permeability but good cellular uptake and high stability. Cell-type-dependent cytotoxicity seems to be caused by the accumulation of silvestrol in cells lacking the ability to expel silvestrol due to low P-glycoprotein levels. Full article
Show Figures

Figure 1

17 pages, 2820 KiB  
Article
Rocaglates as Antivirals: Comparing the Effects on Viral Resistance, Anti-Coronaviral Activity, RNA-Clamping on eIF4A and Immune Cell Toxicity
by Wiebke Obermann, Alexandra Friedrich, Ramakanth Madhugiri, Paul Klemm, Jan Philipp Mengel, Torsten Hain, Stephan Pleschka, Hans-Guido Wendel, Roland K. Hartmann, Susanne Schiffmann, John Ziebuhr, Christin Müller and Arnold Grünweller
Viruses 2022, 14(3), 519; https://doi.org/10.3390/v14030519 - 3 Mar 2022
Cited by 11 | Viewed by 3676
Abstract
Rocaglates are potent broad-spectrum antiviral compounds with a promising safety profile. They inhibit viral protein synthesis for different RNA viruses by clamping the 5′-UTRs of mRNAs onto the surface of the RNA helicase eIF4A. Apart from the natural rocaglate silvestrol, synthetic rocaglates like [...] Read more.
Rocaglates are potent broad-spectrum antiviral compounds with a promising safety profile. They inhibit viral protein synthesis for different RNA viruses by clamping the 5′-UTRs of mRNAs onto the surface of the RNA helicase eIF4A. Apart from the natural rocaglate silvestrol, synthetic rocaglates like zotatifin or CR-1-31-B have been developed. Here, we compared the effects of rocaglates on viral 5′-UTR-mediated reporter gene expression and binding to an eIF4A-polypurine complex. Furthermore, we analyzed the cytotoxicity of rocaglates on several human immune cells and compared their antiviral activities in coronavirus-infected cells. Finally, the potential for developing viral resistance was evaluated by passaging human coronavirus 229E (HCoV-229E) in the presence of increasing concentrations of rocaglates in MRC-5 cells. Importantly, no decrease in rocaglate-sensitivity was observed, suggesting that virus escape mutants are unlikely to emerge if the host factor eIF4A is targeted. In summary, all three rocaglates are promising antivirals with differences in cytotoxicity against human immune cells, RNA-clamping efficiency, and antiviral activity. In detail, zotatifin showed reduced RNA-clamping efficiency and antiviral activity compared to silvestrol and CR-1-31-B, but was less cytotoxic for immune cells. Our results underline the potential of rocaglates as broad-spectrum antivirals with no indications for the emergence of escape mutations in HCoV-229E. Full article
(This article belongs to the Special Issue Host Targeted Therapeutics against Virus Infections)
Show Figures

Figure 1

19 pages, 2463 KiB  
Review
Targeting the DEAD-Box RNA Helicase eIF4A with Rocaglates—A Pan-Antiviral Strategy for Minimizing the Impact of Future RNA Virus Pandemics
by Gaspar Taroncher-Oldenburg, Christin Müller, Wiebke Obermann, John Ziebuhr, Roland K. Hartmann and Arnold Grünweller
Microorganisms 2021, 9(3), 540; https://doi.org/10.3390/microorganisms9030540 - 5 Mar 2021
Cited by 23 | Viewed by 6878
Abstract
The increase in pandemics caused by RNA viruses of zoonotic origin highlights the urgent need for broad-spectrum antivirals against novel and re-emerging RNA viruses. Broad-spectrum antivirals could be deployed as first-line interventions during an outbreak while virus-specific drugs and vaccines are developed and [...] Read more.
The increase in pandemics caused by RNA viruses of zoonotic origin highlights the urgent need for broad-spectrum antivirals against novel and re-emerging RNA viruses. Broad-spectrum antivirals could be deployed as first-line interventions during an outbreak while virus-specific drugs and vaccines are developed and rolled out. Viruses depend on the host’s protein synthesis machinery for replication. Several natural compounds that target the cellular DEAD-box RNA helicase eIF4A, a key component of the eukaryotic translation initiation complex eIF4F, have emerged as potential broad-spectrum antivirals. Rocaglates, a group of flavaglines of plant origin that clamp mRNAs with highly structured 5′ untranslated regions (5′UTRs) onto the surface of eIF4A through specific stacking interactions, exhibit the largest selectivity and potential therapeutic indices among all known eIF4A inhibitors. Their unique mechanism of action limits the inhibitory effect of rocaglates to the translation of eIF4A-dependent viral mRNAs and a minor fraction of host mRNAs exhibiting stable RNA secondary structures and/or polypurine sequence stretches in their 5′UTRs, resulting in minimal potential toxic side effects. Maintaining a favorable safety profile while inducing efficient inhibition of a broad spectrum of RNA viruses makes rocaglates into primary candidates for further development as pan-antiviral therapeutics. Full article
(This article belongs to the Special Issue Antiviral Drug Discovery and Development in the Twenty-First Century)
Show Figures

Figure 1

16 pages, 1678 KiB  
Article
Eukaryotic Translation Initiation Factor 4AI: A Potential Novel Target in Neuroblastoma
by Christina Skofler, Florian Kleinegger, Stefanie Krassnig, Anna Maria Birkl-Toeglhofer, Georg Singer, Holger Till, Martin Benesch, Regina Cencic, John A. Porco, Jerry Pelletier, Christoph Castellani, Andrea Raicht, Ewa Izycka-Swieszewska, Piotr Czapiewski and Johannes Haybaeck
Cells 2021, 10(2), 301; https://doi.org/10.3390/cells10020301 - 2 Feb 2021
Cited by 12 | Viewed by 3447
Abstract
Neuroblastoma (NB) is the most common extracranial pediatric solid tumor. Children suffering from high-risk and/or metastatic NB often show no response to therapy, and new therapeutic approaches are urgently needed. Malignant tumor development has been shown to be driven by the dysregulation of [...] Read more.
Neuroblastoma (NB) is the most common extracranial pediatric solid tumor. Children suffering from high-risk and/or metastatic NB often show no response to therapy, and new therapeutic approaches are urgently needed. Malignant tumor development has been shown to be driven by the dysregulation of eukaryotic initiation factors (eIFs) at the translation initiation. Especially the activity of the heterotrimeric eIF4F complex is often altered in malignant cells, since it is the direct connection to key oncogenic signaling pathways such as the PI3K/AKT/mTOR-pathway. A large body of literature exists that demonstrates targeting the translational machinery as a promising anti-neoplastic approach. The objective of this study was to determine whether eIF4F complex members are aberrantly expressed in NB and whether targeting parts of the complex may be a therapeutic strategy against NB. We show that eIF4AI is overexpressed in NB patient tissue using immunohistochemistry, immunoblotting, and RT-qPCR. NB cell lines exhibit decreased viability, increased apoptosis rates as well as changes in cell cycle distribution when treated with the synthetic rocaglate CR-1-31-B, which clamps eIF4A and eIF4F onto mRNA, resulting in a translational block. Additionally, this study reveals that CR-1-31-B is effective against NB cell lines at low nanomolar doses (≤20 nM), which have been shown to not affect non-malignant cells in previous studies. Thus, our study provides information of the expression status on eIF4AI in NB and offers initial promising insight into targeting translation initiation as an anti-tumorigenic approach for NB. Full article
Show Figures

Figure 1

Back to TopTop