Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = ridaforolimus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1173 KiB  
Review
Three Layers of Personalized Medicine in the Use of Sirolimus and Its Derivatives for the Treatment of Cancer
by Andres Delgado and Steven Enkemann
J. Pers. Med. 2023, 13(5), 745; https://doi.org/10.3390/jpm13050745 - 27 Apr 2023
Viewed by 2753
Abstract
Rapamycin and its derivatives are mTOR inhibitors which are FDA-approved for use as immunosuppressants and chemotherapeutic agents. These agents are currently approved to treat renal cell carcinomas, soft tissue sarcomas, and other rare tumors. As tumor treatment paradigms are moving away from organ-based [...] Read more.
Rapamycin and its derivatives are mTOR inhibitors which are FDA-approved for use as immunosuppressants and chemotherapeutic agents. These agents are currently approved to treat renal cell carcinomas, soft tissue sarcomas, and other rare tumors. As tumor treatment paradigms are moving away from organ-based drug selection and moving towards tumor characteristics for individualized treatment it is important to identify as many properties as possible that impact the efficacy of the rapalogues. A review of the current literature was conducted to identify enzymes involved in the metabolism of Sirolimus, Everolimus, Ridaforolimus, and Temsirolimus along with characteristics of tumors that predict the efficacy of these agents. This review also sought to establish whether the genetic characteristics of the patient might influence the activity of the rapalogues or lead to side effects from these agents. Current evidence suggests that tumors with mutations in the mTOR signal transduction pathway are sensitive to rapalogue treatment; the rapalogues are metabolized by cytochromes such as CYP3A4, CYP3A5, and CYP2C8 and transported by ABC transporters that are known to vary in activity in individuals; and that tumors can express these transporters and detoxifying enzymes. This results in three levels of genetic analysis that could impact the effectiveness of the mTOR inhibitors. Full article
(This article belongs to the Section Personalized Therapy and Drug Delivery)
Show Figures

Figure 1

12 pages, 2713 KiB  
Article
Short-Term Environmental Conditioning Enhances Tumorigenic Potential of Triple-Negative Breast Cancer Cells
by Samantha S. Eckley, Johanna M. Buschhaus, Brock A. Humphries, Tanner H. Robison, Kathryn E. Luker and Gary D. Luker
Tomography 2019, 5(4), 346-357; https://doi.org/10.18383/j.tom.2019.00019 - 1 Dec 2019
Cited by 6 | Viewed by 1781
Abstract
Tumor microenvironments expose cancer cells to heterogeneous, dynamic environments by shifting availability of nutrients, growth factors, and metabolites. Cells integrate various inputs to generate cellular memory that determines trajectories of subsequent phenotypes. Here we report that short-term exposure of triple-negative breast cancer cells [...] Read more.
Tumor microenvironments expose cancer cells to heterogeneous, dynamic environments by shifting availability of nutrients, growth factors, and metabolites. Cells integrate various inputs to generate cellular memory that determines trajectories of subsequent phenotypes. Here we report that short-term exposure of triple-negative breast cancer cells to growth factors or targeted inhibitors regulates subsequent tumor initiation. Using breast cancer cells with different driver mutations, we conditioned cells lines with various stimuli for 4 hours before implanting these cells as tumor xenografts and quantifying tumor progression by means of bioluminescence imaging. In the orthotopic model, conditioning a low number of cancer cells with fetal bovine serum led to enhancement of tumor-initiating potential, tumor volume, and liver metastases. Epidermal growth factor and the mTORC1 inhibitor ridaforolimus produced similar but relatively reduced effects on tumorigenic potential. These data show that a short-term stimulus increases tumorigenic phenotypes based on cellular memory. Conditioning regimens failed to alter proliferation or adhesion of cancer cells in vitro or kinase signaling through Akt and ERK measured by multiphoton microscopy in vivo, suggesting that other mechanisms enhanced tumorigenesis. Given the dynamic nature of the tumor environment and time-varying concentrations of small-molecule drugs, this work highlights how variable conditions in tumor environments shape tumor formation, metastasis, and response to therapy. Full article
13 pages, 470 KiB  
Article
Pharmacokinetic Evaluation of a DSPE-PEG2000 Micellar Formulation of Ridaforolimus in Rat
by Connie M. Remsberg, Yunqi Zhao, Jody K. Takemoto, Rebecca M. Bertram, Neal M. Davies and Marcus Laird Forrest
Pharmaceutics 2013, 5(1), 81-93; https://doi.org/10.3390/pharmaceutics5010081 - 27 Dec 2012
Cited by 15 | Viewed by 9349
Abstract
The rapamycin analog, ridaforolimus, has demonstrated potent anti-proliferative effects in cancer treatment, and it currently is being evaluated in a range of clinical cancer studies. Ridaforolimus is an extremely lipophilic compound with limited aqueous solubility, which may benefit from formulation with polymeric micelles. [...] Read more.
The rapamycin analog, ridaforolimus, has demonstrated potent anti-proliferative effects in cancer treatment, and it currently is being evaluated in a range of clinical cancer studies. Ridaforolimus is an extremely lipophilic compound with limited aqueous solubility, which may benefit from formulation with polymeric micelles. Herein, we report the encapsulation of ridaforolimus in 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-methoxy-poly(ethylene glycol 2000) (DSPE-PEG2000) via a solvent extraction technique. Micelle loading greatly improved the solubility of ridaforolimus by approximately 40 times from 200 μg/mL to 8.9 mg/mL. The diameters of the drug-loaded micelles were 33 ± 15 nm indicating they are of appropriate size to accumulate within the tumor site via the enhanced permeability and retention (EPR) effect. The DSPE-PEG2000 micelle formulation was dosed intravenously to rats at 10 mg/kg and compared to a control of ridaforolimus in ethanol/PEG 400. The micelle significantly increased the half-life of ridaforolimus by 170% and decreased the clearance by 58%, which is consistent with improved retention of the drug in the plasma by the micelle formulation. Full article
(This article belongs to the Special Issue Micellar Drug Delivery)
Show Figures

Graphical abstract

Back to TopTop