Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = rheopexy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 6290 KiB  
Article
Fractal and Fractional Derivative Modelling of Material Phase Change
by Harry Esmonde
Fractal Fract. 2020, 4(3), 46; https://doi.org/10.3390/fractalfract4030046 - 14 Sep 2020
Cited by 10 | Viewed by 2670
Abstract
An iterative approach is taken to develop a fractal topology that can describe the material structure of phase changing materials. Transfer functions and frequency response functions based on fractional calculus are used to describe this topology and then applied to model phase transformations [...] Read more.
An iterative approach is taken to develop a fractal topology that can describe the material structure of phase changing materials. Transfer functions and frequency response functions based on fractional calculus are used to describe this topology and then applied to model phase transformations in liquid/solid transitions in physical processes. Three types of transformation are tested experimentally, whipping of cream (rheopexy), solidification of gelatine and melting of ethyl vinyl acetate (EVA). A liquid-type model is used throughout the cream whipping process while liquid and solid models are required for gelatine and EVA to capture the yield characteristic of these materials. Full article
(This article belongs to the Special Issue Fractional Behavior in Nature 2019)
Show Figures

Figure 1

11 pages, 4222 KiB  
Article
Rheopectic Behavior for Aqueous Solutions of Megamolecular Polysaccharide Sacran
by Fitri Adila Amat Yusof, Miho Yamaki, Mika Kawai, Maiko K. Okajima, Tatsuo Kaneko and Tetsu Mitsumata
Biomolecules 2020, 10(1), 155; https://doi.org/10.3390/biom10010155 - 17 Jan 2020
Cited by 12 | Viewed by 4353
Abstract
The rheopectic behavior of sacran aqueous solutions, a natural giant molecular polysaccharide with a molecular weight of 1.6 × 107 g/mol, was investigated. When a low shear was applied to 1.0 wt.% sacran solution, the shear viscosity increased from 7.2 to 34 [...] Read more.
The rheopectic behavior of sacran aqueous solutions, a natural giant molecular polysaccharide with a molecular weight of 1.6 × 107 g/mol, was investigated. When a low shear was applied to 1.0 wt.% sacran solution, the shear viscosity increased from 7.2 to 34 Pa·s. The increment in the viscosity was enhanced as the shear rate decreased. The shear viscosity was independent of the time at a shear rate of 0.8 s−1; simultaneously, thixotropic behavior was observed at shear rates higher than 1.0 s−1. A crossover was observed at 0.15 wt.% for the concentration dependence of both the viscosity increase and zeta potential, which was the vicinity of the helix transition concentration or gelation concentration. It was clear that the molecular mechanism for the rheopexy was different at lower and higher regions of the crossover concentration. Full article
Show Figures

Figure 1

Back to TopTop