Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = rhadinovirus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1382 KiB  
Article
Molecular Identification and Characterization of a Novel Gammaherpesvirus in Wild Rabbits
by Fábio A. Abade dos Santos, Ana Duarte, Inês C. Varandas, Silvia S. Barros, Ana M. Henriques, Teresa Fagulha and Margarida D. Duarte
Viruses 2025, 17(7), 967; https://doi.org/10.3390/v17070967 - 10 Jul 2025
Viewed by 377
Abstract
To date, five herpesviruses have been identified in Leporidae (LeHV-1, LeHV-2, LeHV-3, LeHV-4, and LeHV-5). Two of these have been shown to infect the European rabbit (Oryctolagus cuniculus), causing either asymptomatic infection (LeHV-2, a gammaherpesvirus) or virulent disease (LeHV-4, an alphaherpesvirus). Unfortunately, apart [...] Read more.
To date, five herpesviruses have been identified in Leporidae (LeHV-1, LeHV-2, LeHV-3, LeHV-4, and LeHV-5). Two of these have been shown to infect the European rabbit (Oryctolagus cuniculus), causing either asymptomatic infection (LeHV-2, a gammaherpesvirus) or virulent disease (LeHV-4, an alphaherpesvirus). Unfortunately, apart from LeHV-4, for which complete genome sequences are available, molecular data on leporid herpesviruses are extremely limited, with no sequences available in public databases for LeHV-1 and LeHV-3, and only a few short sequences for LeHV-2 and LeHV-5. In this study, we investigated the presence of herpesviruses in biological samples from wild rabbits (n = 34) found dead in the field during 2024. A pan-herpesvirus nested PCR directed to the herpesviral DNA polymerase gene was used for screening. Positive samples (n = 14, 41.17%) were further investigated by sequencing analysis of a longer region of the DNA polymerase gene, as well as the glycoprotein B gene and the terminase gene. Blastn analysis of the amplicons revealed the highest similarity to gammaherpesvirus. Phylogenetic analyses based on glycoprotein B, DNA polymerase, and concatenated amino acid sequences consistently placed the newly identified LeHV-6 in close proximity to LeHV-5. Both viruses form a well-supported clade within the Gammaherpesvirinae, clustering with rodent-associated herpesviruses, such as Murine herpesvirus, MuHV-4, and A. sylvaticus rhadinovirus 1. Considering the species susceptibility and the nucleotide similarities with the five previously described leporid herpesviruses, we conclude that a new rabbit gammaherpesvirus has been identified, which we propose to name LeHV-6. Full article
(This article belongs to the Special Issue Animal Virus Discovery and Genetic Diversity: 2nd Edition)
Show Figures

Figure 1

14 pages, 2309 KiB  
Article
Whole Genome Sequence-Based Analysis of Bovine Gammaherpesvirus 4 Isolated from Bovine Abortions
by Florencia Romeo, Maximiliano Joaquín Spetter, Susana Beatriz Pereyra, Pedro Edgardo Morán, Erika Analía González Altamiranda, Enrique Leopoldo Louge Uriarte, Anselmo Carlos Odeón, Sandra Elizabeth Pérez and Andrea Elizabeth Verna
Viruses 2024, 16(5), 739; https://doi.org/10.3390/v16050739 - 8 May 2024
Cited by 3 | Viewed by 1709
Abstract
Bovine gammaherpesvirus 4 (BoGHV4) is a member of the Gammaherspivirinae subfamily, Rhadinovirus genus. Its natural host is the bovine, and it is prevalent among the global cattle population. Although the complete genome of BoGHV4 has been successfully sequenced, the functions of most of [...] Read more.
Bovine gammaherpesvirus 4 (BoGHV4) is a member of the Gammaherspivirinae subfamily, Rhadinovirus genus. Its natural host is the bovine, and it is prevalent among the global cattle population. Although the complete genome of BoGHV4 has been successfully sequenced, the functions of most of its genes remain unknown. Currently, only six strains of BoGHV4, all belonging to Genotype 1, have been sequenced. This is the first report of the nearly complete genome of Argentinean BoGHV4 strains isolated from clinical cases of abortion, representing the first BoGHV4 Genotype 2 and 3 genomes described in the literature. Both Argentinean isolates presented the highest nt p-distance values, indicating a greater level of divergence. Overall, the considerable diversity observed in the complete genomes and open reading frames underscores the distinctiveness of both Argentinean isolates compared to the existing BoGHV4 genomes. These findings support previous studies that categorized the Argentinean BoGHV4 strains 07-435 and 10-154 as Genotypes 3 and 2, respectively. The inclusion of these sequences represents a significant expansion to the currently limited pool of BoGHV4 genomes while providing an important basis to increase the knowledge of local isolates. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

14 pages, 1242 KiB  
Article
Ovine Herpesvirus 2 Glycoprotein B Complementation Restores Infectivity to a Bovine Herpesvirus 4 gB-Null Mutant
by Daniela D. Moré, Katherine N. Baker, Smriti Shringi, Reginaldo G. Bastos, Donal O’Toole, Gaetano Donofrio and Cristina W. Cunha
Pathogens 2024, 13(3), 219; https://doi.org/10.3390/pathogens13030219 - 1 Mar 2024
Cited by 1 | Viewed by 2420
Abstract
Ovine herpesvirus 2 (OvHV-2) and bovine herpesvirus 4 (BoHV-4) are gamma herpesviruses that belong to the genera Macavirus and Rhadinovirus, respectively. As with all herpesviruses, both OvHV-2 and BoHV-4 express glycoprotein B (gB), which plays an essential role in the infection of [...] Read more.
Ovine herpesvirus 2 (OvHV-2) and bovine herpesvirus 4 (BoHV-4) are gamma herpesviruses that belong to the genera Macavirus and Rhadinovirus, respectively. As with all herpesviruses, both OvHV-2 and BoHV-4 express glycoprotein B (gB), which plays an essential role in the infection of host cells. In that context, it has been demonstrated that a BoHV-4 gB-null mutant is unable to infect host cells. In this study, we used homologous recombination to insert OvHV-2 ORF 8, encoding gB, into the BoHV-4 gB-null mutant genome, creating a chimeric BoHV-4 virus carrying and expressing OvHV-2 gB (BoHV-4∆gB/OvHV-2-gB) that was infectious and able to replicate in vitro. We then evaluated BoHV-4∆gB/OvHV-2-gB as a potential vaccine candidate for sheep-associated malignant catarrhal fever (SA-MCF), a fatal disease of ungulates caused by OvHV-2. Using rabbits as a laboratory model for MCF, we assessed the safety, immunogenicity, and efficacy of BoHV-4∆gB/OvHV-2-gB in an immunization/challenge trial. The results showed that while BoHV-4∆gB/OvHV-2-gB was safe and induced OvHV-2 gB-specific humoral immune responses, immunization conferred only 28.5% protection upon challenge with OvHV-2. Therefore, future studies should focus on alternative strategies to express OvHV-2 proteins to develop an effective vaccine against SA-MCF. Full article
(This article belongs to the Special Issue Herpesvirus Diseases in Humans and Animals)
Show Figures

Figure 1

26 pages, 510 KiB  
Review
E3 Ubiquitin Ligases in Gammaherpesviruses and HIV: A Review of Virus Adaptation and Exploitation
by Jessica Oswald, Mathew Constantine, Adedolapo Adegbuyi, Esosa Omorogbe, Anna J. Dellomo and Elana S. Ehrlich
Viruses 2023, 15(9), 1935; https://doi.org/10.3390/v15091935 - 15 Sep 2023
Cited by 5 | Viewed by 2347
Abstract
For productive infection and replication to occur, viruses must control cellular machinery and counteract restriction factors and antiviral proteins. Viruses can accomplish this, in part, via the regulation of cellular gene expression and post-transcriptional and post-translational control. Many viruses co-opt and counteract cellular [...] Read more.
For productive infection and replication to occur, viruses must control cellular machinery and counteract restriction factors and antiviral proteins. Viruses can accomplish this, in part, via the regulation of cellular gene expression and post-transcriptional and post-translational control. Many viruses co-opt and counteract cellular processes via modulation of the host post-translational modification machinery and encoding or hijacking kinases, SUMO ligases, deubiquitinases, and ubiquitin ligases, in addition to other modifiers. In this review, we focus on three oncoviruses, Epstein–Barr virus (EBV), Kaposi’s sarcoma herpesvirus (KSHV), and human immunodeficiency virus (HIV) and their interactions with the ubiquitin–proteasome system via viral-encoded or cellular E3 ubiquitin ligase activity. Full article
(This article belongs to the Special Issue Ubiquitin and Ubiquitin-Like Pathways in Viral Infection 2023)
14 pages, 3552 KiB  
Article
Gammaherpesvirus in Cervid Species from Norway: Characterization of a New Virus in Wild and Semi-Domesticated Eurasian Tundra Reindeer (Rangifer tarandus tarandus)
by Carlos G. das Neves, Carlos Sacristán, Knut Madslien and Morten Tryland
Viruses 2020, 12(8), 876; https://doi.org/10.3390/v12080876 - 11 Aug 2020
Cited by 9 | Viewed by 5994
Abstract
Gammaherpesvirus infections have been described in cervids worldwide, mainly the genera Macavirus or Rhadinovirus. However, little is known about the gammaherpesviruses species infecting cervids in Norway and Fennoscandia. Blood samples from semi-domesticated (n = 39) and wild (n = 35) [...] Read more.
Gammaherpesvirus infections have been described in cervids worldwide, mainly the genera Macavirus or Rhadinovirus. However, little is known about the gammaherpesviruses species infecting cervids in Norway and Fennoscandia. Blood samples from semi-domesticated (n = 39) and wild (n = 35) Eurasian tundra reindeer (Rangifer tarandus tarandus), moose (Alces alces, n = 51), and red deer (Cervus elaphus, n = 41) were tested using a panherpesvirus DNA polymerase (DPOL) PCR. DPOL-PCR-positive samples were subsequently tested for the presence of glycoprotein B (gB) gene. The viral DPOL gene was amplified in 28.2% (11/39) of the semi-domesticated reindeer and in 48.6% (17/35) of the wild reindeer. All moose and red deer tested negative. Additionally, gB gene was amplified in 4 of 11 semi-domesticated and 15 of 17 wild Eurasian reindeer DPOL-PCR-positive samples. All the obtained DPOL and gB sequences were highly similar among them, and corresponded to a novel gammaherpesvirus species, tentatively named Rangiferine gammaherpesvirus 1, that seemed to belong to a genus different from Macavirus and Rhadinovirus. This is the first report of a likely host-specific gammaherpesvirus in semi-domesticated reindeer, an economic and cultural important animal, and in wild tundra reindeer, the lastpopulation in Europe. Future studies are required to clarify the potential impact of this gammaherpesvirus on reindeer health. Full article
(This article belongs to the Special Issue Animal and Wildlife Viruses)
Show Figures

Figure 1

25 pages, 2903 KiB  
Article
RTA Occupancy of the Origin of Lytic Replication during Murine Gammaherpesvirus 68 Reactivation from B Cell Latency
by Alexis L. Santana, Darby G. Oldenburg, Varvara Kirillov, Laraib Malik, Qiwen Dong, Roman Sinayev, Kenneth B. Marcu, Douglas W. White and Laurie T. Krug
Pathogens 2017, 6(1), 9; https://doi.org/10.3390/pathogens6010009 - 16 Feb 2017
Cited by 10 | Viewed by 7930
Abstract
RTA, the viral Replication and Transcription Activator, is essential for rhadinovirus lytic gene expression upon de novo infection and reactivation from latency. Lipopolysaccharide (LPS)/toll-like receptor (TLR)4 engagement enhances rhadinovirus reactivation. We developed two new systems to examine the interaction of RTA with host [...] Read more.
RTA, the viral Replication and Transcription Activator, is essential for rhadinovirus lytic gene expression upon de novo infection and reactivation from latency. Lipopolysaccharide (LPS)/toll-like receptor (TLR)4 engagement enhances rhadinovirus reactivation. We developed two new systems to examine the interaction of RTA with host NF-kappaB (NF-κB) signaling during murine gammaherpesvirus 68 (MHV68) infection: a latent B cell line (HE-RIT) inducible for RTA-Flag expression and virus reactivation; and a recombinant virus (MHV68-RTA-Bio) that enabled in vivo biotinylation of RTA in BirA transgenic mice. LPS acted as a second stimulus to drive virus reactivation from latency in the context of induced expression of RTA-Flag. ORF6, the gene encoding the single-stranded DNA binding protein, was one of many viral genes that were directly responsive to RTA induction; expression was further increased upon treatment with LPS. However, NF-κB sites in the promoter of ORF6 did not influence RTA transactivation in response to LPS in HE-RIT cells. We found no evidence for RTA occupancy of the minimal RTA-responsive region of the ORF6 promoter, yet RTA was found to complex with a portion of the right origin of lytic replication (oriLyt-R) that contains predicted RTA recognition elements. RTA occupancy of select regions of the MHV-68 genome was also evaluated in our novel in vivo RTA biotinylation system. Streptavidin isolation of RTA-Bio confirmed complex formation with oriLyt-R in LPS-treated primary splenocytes from BirA mice infected with MHV68 RTA-Bio. We demonstrate the utility of reactivation-inducible B cells coupled with in vivo RTA biotinylation for mechanistic investigations of the interplay of host signaling with RTA. Full article
(This article belongs to the Special Issue Herpesviruses)
Show Figures

Graphical abstract

26 pages, 317 KiB  
Review
Exploitation of Cellular Cytoskeletons and Signaling Pathways for Cell Entry by Kaposi’s Sarcoma-Associated Herpesvirus and the Closely Related Rhesus Rhadinovirus
by Wei Zhang and Shou-Jiang Gao
Pathogens 2012, 1(2), 102-127; https://doi.org/10.3390/pathogens1020102 - 22 Oct 2012
Cited by 8 | Viewed by 7412
Abstract
As obligate intracellular pathogens, viruses depend on the host cell machinery to complete their life cycle. Kaposi’s sarcoma-associated herpesvirus (KSHV) is an oncogenic virus causally linked to the development of Kaposi’s sarcoma and several other lymphoproliferative malignancies. KSHV entry into cells is tightly [...] Read more.
As obligate intracellular pathogens, viruses depend on the host cell machinery to complete their life cycle. Kaposi’s sarcoma-associated herpesvirus (KSHV) is an oncogenic virus causally linked to the development of Kaposi’s sarcoma and several other lymphoproliferative malignancies. KSHV entry into cells is tightly regulated by diverse viral and cellular factors. In particular, KSHV actively engages cellular integrins and ubiquitination pathways for successful infection. Emerging evidence suggests that KSHV hijacks both actin and microtubule cytoskeletons at different phases during entry into cells. Here, we review recent findings on the early events during primary infection of KSHV and its closely related primate homolog rhesus rhadinovirus with highlights on the regulation of cellular cytoskeletons and signaling pathways that are important for this phase of virus life cycle. Full article
(This article belongs to the Special Issue Infection and Cancer)
Back to TopTop