Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = reward-penalty ladder carbon trading

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 7694 KiB  
Article
Optimized Dispatch of Integrated Energy Systems in Parks Considering P2G-CCS-CHP Synergy Under Renewable Energy Uncertainty
by Zhiyuan Zhang, Xiqin Li, Lu Zhang, Hu Zhao, Ziren Wang, Wei Li and Baosong Wang
Processes 2025, 13(3), 680; https://doi.org/10.3390/pr13030680 - 27 Feb 2025
Viewed by 650
Abstract
To enhance low-carbon economies within Park Integrated Energy Systems (PIES) while addressing the variability of wind power generation, an innovative optimization scheduling strategy is proposed, incorporating a reward-and-punishment ladder carbon trading mechanism. This method effectively mitigates the unpredictability of wind power output and [...] Read more.
To enhance low-carbon economies within Park Integrated Energy Systems (PIES) while addressing the variability of wind power generation, an innovative optimization scheduling strategy is proposed, incorporating a reward-and-punishment ladder carbon trading mechanism. This method effectively mitigates the unpredictability of wind power output and integrates Power-to-Gas (P2G), Carbon Capture and Storage (CCS), and Combined Heat and Power (CHP) systems. This study develops a CHP model that combines P2G and CCS, focusing on electric-heat coupling characteristics and establishing constraints on P2G capacity, thereby significantly enhancing electric energy flexibility and reducing carbon emissions. The carbon allowance trading strategy is refined through the integration of reward and punishment coefficients, yielding a more effective trading model. To accurately capture wind power uncertainty, the research employs kernel density estimation and Copula theory to create a representative sequence of daily wind and photovoltaic power scenarios. The Dung Beetle Optimization (DBO) algorithm, augmented by Non-Dominated Sorting (NSDBO), is utilized to solve the resulting multi-objective model. Simulation results indicate that the proposed strategy increases the utilization rates of renewable energy in PIES by 28.86% and 19.85%, while achieving a reduction in total carbon emissions by 77.65% and a decrease in overall costs by 36.91%. Full article
(This article belongs to the Special Issue Modeling, Simulation and Control in Energy Systems)
Show Figures

Figure 1

26 pages, 9914 KiB  
Article
Collaborative Optimization Scheduling of Source-Network-Load-Storage System Based on Ladder-Type Green Certificate–Carbon Joint Trading Mechanism and Integrated Demand Response
by Zhenglong Wang, Jiahui Wu, Yang Kou, Menglin Zhang and Huan Jiang
Sustainability 2024, 16(22), 10104; https://doi.org/10.3390/su162210104 - 19 Nov 2024
Cited by 1 | Viewed by 1074
Abstract
To fully leverage the potential flexibility resources of a source-network-load-storage (SNLS) system and achieve the green transformation of multi-source systems, this paper proposes an economic and low-carbon operation strategy for an SNLS system, considering the joint operation of ladder-type green certificate trading (GCT)–carbon [...] Read more.
To fully leverage the potential flexibility resources of a source-network-load-storage (SNLS) system and achieve the green transformation of multi-source systems, this paper proposes an economic and low-carbon operation strategy for an SNLS system, considering the joint operation of ladder-type green certificate trading (GCT)–carbon emission trading (CET), and integrated demand response (IDR). Firstly, focusing on the load side of electricity–heat–cooling–gas multi-source coupling, this paper comprehensively considers three types of flexible loads: transferable, replaceable, and reducible. An IDR model is established to tap into the load-side scheduling potential. Secondly, improvements are made to the market mechanisms: as a result of the division into tiered intervals and introduction of reward–penalty coefficients, the traditional GCT mechanism was improved to a more constraining and flexible ladder-type GCT mechanism. Moreover, the carbon offset mechanism behind green certificates serves as a bridge, leading to a GCT-CET joint operation mechanism. Finally, an economic low-carbon operation model is formulated with the objective of minimizing the comprehensive cost consisting of GCT cost, CET cost, energy procurement cost, IDR cost, and system operation cost. Simulation results indicate that by effectively integrating market mechanisms and IDR, the system can enhance its capacity for renewable energy penetration, reduce carbon emissions, and achieve green and sustainable development. Full article
Show Figures

Figure 1

Back to TopTop