Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = reverse Brayton cycle coolers (RBCC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5827 KiB  
Article
Design Study for a Superconducting High-Power Fan Drive for a Long-Range Aircraft
by Jan Hoffmann, Wolf-Rüdiger Canders and Markus Henke
Energies 2024, 17(22), 5652; https://doi.org/10.3390/en17225652 - 12 Nov 2024
Viewed by 1410
Abstract
New aerodynamic aircraft concepts enable the storage of volumetric liquid hydrogen (LH2). Additionally, the low temperatures of LH2 enable technologies such as the superconductivity of electrical fan drives and power distribution components. An increased power density of the onboard wiring harness and the [...] Read more.
New aerodynamic aircraft concepts enable the storage of volumetric liquid hydrogen (LH2). Additionally, the low temperatures of LH2 enable technologies such as the superconductivity of electrical fan drives and power distribution components. An increased power density of the onboard wiring harness and the electrical machine can be expected. The highest system efficiency and the smallest fuel and tank weight will be achieved with a highly efficient energy conversion by the fuel cell from LH2 to electrical energy. This publication shows a comprehensive study for cryogenic fan drives based on experimental-driven tape superconductor investigations, mission profile-based considerations, design analyses of superconducting electrical machines, and studies of the cooling concepts. A cryogenic system cannot be considered without a feasible cooling concept. Here, an approach with a safe He-based cooling system is proposed, using the LH2 flow to the fuel cell as a heat sink for the losses in the electrical system. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

Back to TopTop