Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = reused construction waste (RCW)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4423 KiB  
Article
Recycling Red Ceramic Waste as a Raw Material for Lightweight Aggregates
by Maelson Mendonça de Souza, Normando Perazzo Barbosa, Marcos Alyssandro Soares dos Anjos, João Gabriel Cruz Aguiar, José Anselmo da Silva Neto and Cinthia Maia Pederneiras
Appl. Sci. 2025, 15(10), 5729; https://doi.org/10.3390/app15105729 - 20 May 2025
Cited by 2 | Viewed by 396
Abstract
The growing demand for lightweight aggregates (LWAs) in the construction industry is driving the development of sustainable alternatives based on the reuse of solid industrial waste. The aim of this study was to assess the technical feasibility of using red ceramic waste (RCW) [...] Read more.
The growing demand for lightweight aggregates (LWAs) in the construction industry is driving the development of sustainable alternatives based on the reuse of solid industrial waste. The aim of this study was to assess the technical feasibility of using red ceramic waste (RCW) as a partial or total substitute for red clay (RC) to produce lightweight expandable aggregates. Six formulations were made with different proportions of RCW and RC and sintered at four temperatures (1100, 1150, 1200 and 1250 °C). They were characterised using physical, thermal, morphological, chemical and mechanical analyses, according to standard protocols. The results showed that almost all the formulations sintered at 1200 and 1250 °C had a positive bloating index (BI > 0), particle density of less than 2.0 g/cm3, low water absorption of less than 2% and mechanical strength of more than 5.4 MPa, revealing strong potential for use in lightweight structural and non-structural concrete. The main conclusion is that RCW, even used in isolation, has physicochemical and mineralogical properties suitable for the production of lightweight aggregates under optimised thermal conditions, contributing to the development of sustainable materials with a competitive technical performance compared to commercial LWAs. Full article
(This article belongs to the Special Issue Sustainable Materials and Innovative Solutions for Green Construction)
Show Figures

Figure 1

26 pages, 18161 KiB  
Article
Novel Cement-Based Materials Using Seawater, Reused Construction Waste, and Alkali Agents
by Yang Bai, Yajun Wang, Tao Yang and Xiaoyang Chen
Buildings 2024, 14(11), 3696; https://doi.org/10.3390/buildings14113696 - 20 Nov 2024
Cited by 1 | Viewed by 1010
Abstract
This study aimed to develop marine alkali paste (MAP) produced using seawater (SW), recyclable particle material from paste specimens (RPPs), and alkali agents including NaOH (NH) and Na2O·3SiO2 (NS). The physicochemical properties and strength of the MAP were investigated with [...] Read more.
This study aimed to develop marine alkali paste (MAP) produced using seawater (SW), recyclable particle material from paste specimens (RPPs), and alkali agents including NaOH (NH) and Na2O·3SiO2 (NS). The physicochemical properties and strength of the MAP were investigated with uniaxial compression tests (UCTs), an Energy-Dispersive Spectrometer (EDS), X-ray diffraction (XRD), and thermal-field emission scanning electron microscopy (SEM). The key information on the MAP preparation and experiments, including mix ratios, ages, curing, and sub-specimen locations, were recorded during the investigation. The results indicated that 8-day-old MAP prepared with NS reached a maximum compressive strength of 8.3 MPa, while 8-day-old NH-prepared specimens achieved up to 5.59 MPa. By 49 days, NS-prepared MAP had strengths between 5.46 MPa and 7.34 MPa, while the strength of NH-prepared MAP ranged from 3.59 MPa to 5.83 MPa. The key hydration products were Friedel’s salt (3CaO·Al2O3·CaCl2·10H2O, FS), xCaO·SiO2·nH2O (C-S-H), CaO·Al2O3·2SiO2·4H2O (C-A-S-H), and Na2O·Al2O3·zSiO2·2H2O (N-A-S-H). C-S-H was generated under the critical curing and working conditions in SW. C-A-S-H development contributed to C-S-H network compaction. N-A-S-H development helped in resistance to SO42− erosion, thereby cutting down ettringite (Ca6Al2(SO4)3(OH)12·26H2O) development. The active ion exchange between MAP and SW mainly involving SO42− and Cl led to the significant formation of FS at the interface of C-A-S-H and xCaO·Al2O3·nH2O (C-A-H). Therefore, FS generation inhibited SO42− and Cl corrosion in the MAP and rebounded the interface cracks of the hydration products. Consequently, FS contributed to the protection and development of C-S-H in the MAP, which ensured the suitability and applicability of the MAP in marine environments. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

Back to TopTop