Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = retinol dehydrogenase 12

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1495 KB  
Article
Proteomic Analysis of Endometrial Cancer Tissues from Patients with Type 2 Diabetes Mellitus
by Muhammad Mujammami, Mohamed Rafiullah, Assim A. Alfadda, Khalid Akkour, Ibrahim O. Alanazi, Afshan Masood, Mohthash Musambil, Hani Alhalal, Maria Arafah, Anas M. Abdel Rahman and Hicham Benabdelkamel
Life 2022, 12(4), 491; https://doi.org/10.3390/life12040491 - 28 Mar 2022
Cited by 6 | Viewed by 3416
Abstract
Endometrial cancer (EC) is the most common form of gynecological cancer. Type 2 diabetes mellitus is associated with an increased risk of EC. Currently, no proteomic studies have investigated the role of diabetes in endometrial cancers from clinical samples. The present study aims [...] Read more.
Endometrial cancer (EC) is the most common form of gynecological cancer. Type 2 diabetes mellitus is associated with an increased risk of EC. Currently, no proteomic studies have investigated the role of diabetes in endometrial cancers from clinical samples. The present study aims to elucidate the molecular link between diabetes and EC using a proteomic approach. Endometrial tissue samples were obtained from age-matched patients (EC Diabetic and EC Non-Diabetic) during surgery. Untargeted proteomic analysis of the endometrial tissues was carried out using a two-dimensional difference in gel electrophoresis (2D-DIGE) coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF). A total of 53 proteins were identified, with a significant difference in abundance (analysis of variance (ANOVA) test, p ≤ 0.05; fold-change ≥ 1.5) between the two groups, among which 30 were upregulated and 23 downregulated in the EC Diabetic group compared to EC Non-Diabetic. The significantly upregulated proteins included peroxiredoxin-1, vinculin, endoplasmin, annexin A5, calreticulin, and serotransferrin. The significantly downregulated proteins were myosin regulatory light polypeptide 9, Retinol dehydrogenase 12, protein WWC3, intraflagellar transport protein 88 homolog, superoxide dismutase [Cu-Zn], and retinal dehydrogenase 1. The network pathway was related to connective tissue disorder, developmental disorder, and hereditary disorder, with the identified proteins centered around dysregulation of ERK1/2 and F Actin signaling pathways. Cancer-associated protein alterations such as upregulation of peroxiredoxin-1, annexin 5, and iNOS, and downregulation of RDH12, retinaldehyde dehydrogenase 1, SOD1, and MYL 9, were found in the EC tissues of the diabetic group. Differential expression of proteins linked to cancer metastasis, such as the upregulation of vinculin and endoplasmin and downregulation of WWC3 and IFT88, was seen in the patients with diabetes. Calreticulin and alpha-enolase, which might have a role in the interplay between diabetes and EC, need further investigation. Full article
(This article belongs to the Section Genetics and Genomics)
Show Figures

Figure 1

17 pages, 3312 KB  
Article
Similarities in DSG1 and KRT3 Downregulation through Retinoic Acid Treatment and PAX6 Knockdown Related Expression Profiles: Does PAX6 Affect RA Signaling in Limbal Epithelial Cells?
by Lorenz Latta, Igor Knebel, Constanze Bleil, Tanja Stachon, Priya Katiyar, Claire Zussy, Fabian Norbert Fries, Barbara Käsmann-Kellner, Berthold Seitz and Nóra Szentmáry
Biomolecules 2021, 11(11), 1651; https://doi.org/10.3390/biom11111651 - 8 Nov 2021
Cited by 17 | Viewed by 3584
Abstract
Congenital PAX6-aniridia is a rare panocular disease resulting from limbal stem cell deficiency. In PAX6-aniridia, the downregulation of the retinol-metabolizing enzymes ADH7 (All-trans-retinol dehydrogenase 7) and ALDH1A1/A3 (Retinal dehydrogenase 1, Aldehyde dehydrogenase family 1 member A3) have been described in limbal epithelial cells [...] Read more.
Congenital PAX6-aniridia is a rare panocular disease resulting from limbal stem cell deficiency. In PAX6-aniridia, the downregulation of the retinol-metabolizing enzymes ADH7 (All-trans-retinol dehydrogenase 7) and ALDH1A1/A3 (Retinal dehydrogenase 1, Aldehyde dehydrogenase family 1 member A3) have been described in limbal epithelial cells (LECs) and conjunctival epithelial cells. The aim of this study was to identify the role of retinol derivates in the differentiation of human LEC and its potential impact on aniridia-associated keratopathy development. Human LEC were isolated from healthy donor corneas and were cultured with retinol, retinoic acid, or pan-retinoic acid receptor antagonist (AGN 193109) acting on RARα, β, γ (NR1B1, NR1B2 NR1B3) or were cultured with pan-retinoid X receptor antagonist (UVI 3003) acting on RXR α, β, γ (retinoid X receptor, NR2B1, NR2B2, BR2B3). Using qPCR, differentiation marker and retinoid-/fatty acid metabolism-related mRNA expression was analysed. DSG1 (Desmoglein 1), KRT3 (Keratin 3), and SPINK7 (Serine Peptidase Inhibitor Kazal Type 7) mRNA expression was downregulated when retinoid derivates were used. AGN 193109 treatment led to the upregulation of ADH7, KRT3, and DSG1 mRNA expression and to the downregulation of KRT12 (Keratin 12) and KRT19 (Keratin 19) mRNA expression. Retinol and all-trans retinoic acid affect some transcripts of corneal LEC in a similar way to what has been observed in the LEC of PAX6-aniridia patients with the altered expression of differentiation markers. An elevated concentration of retinol derivatives in LEC or an altered response to retinoids may contribute to this pattern. These initial findings help to explain ocular surface epithelia differentiation disorders in PAX6-aniridia and should be investigated in patient cells or in cell models in the future in more detail. Full article
Show Figures

Figure 1

16 pages, 2816 KB  
Article
Involvement of Oxidative and Endoplasmic Reticulum Stress in RDH12-Related Retinopathies
by Hajrah Sarkar, Maria Toms and Mariya Moosajee
Int. J. Mol. Sci. 2021, 22(16), 8863; https://doi.org/10.3390/ijms22168863 - 18 Aug 2021
Cited by 17 | Viewed by 4212
Abstract
Retinol dehydrogenase 12 (RDH12) is expressed in photoreceptor inner segments and catalyses the reduction of all-trans retinal (atRAL) to all-trans retinol (atROL), as part of the visual cycle. Mutations in RDH12 are primarily associated with autosomal recessive Leber congenital amaurosis. To further our [...] Read more.
Retinol dehydrogenase 12 (RDH12) is expressed in photoreceptor inner segments and catalyses the reduction of all-trans retinal (atRAL) to all-trans retinol (atROL), as part of the visual cycle. Mutations in RDH12 are primarily associated with autosomal recessive Leber congenital amaurosis. To further our understanding of the disease mechanisms, HEK-293 cell lines expressing wildtype (WT) and mutant RDH12 were created. The WT cells afforded protection from atRAL-induced toxicity and oxidative stress. Mutant RDH12 cells displayed reduced protein expression and activity, with an inability to protect cells from atRAL toxicity, inducing oxidative and endoplasmic reticulum (ER) stress, with upregulation of sXBP1, CHOP, and ATF4. Pregabalin, a retinal scavenger, attenuated atRAL-induced ER stress in the mutant RDH12 cell lines. A zebrafish rdh12 mutant model (rdh12u533 c.17_23del; p.(Val6AlafsTer5)) was generated through CRISPR-Cas9 gene editing. Mutant fish showed disrupted phagocytosis through transmission electron microscopy, with increased phagosome size at 12 months post-fertilisation. Rhodopsin mislocalisation and reduced expression of atg12 and sod2 indicated early signs of a rod-predominant degeneration. A lack of functional RDH12 results in ER and oxidative stress representing key pathways to be targeted for potential therapeutics. Full article
Show Figures

Figure 1

Back to TopTop