Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = repellent surface plate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 12594 KiB  
Article
A Simple Model to Study Mosaic Gene Expression in 3D Endothelial Spheroids
by Lucinda S. McRobb, Vivienne S. Lee, Fahimeh Faqihi and Marcus A. Stoodley
J. Cardiovasc. Dev. Dis. 2024, 11(10), 305; https://doi.org/10.3390/jcdd11100305 - 2 Oct 2024
Cited by 1 | Viewed by 1309
Abstract
Aims: The goal of this study was to establish a simple model of 3D endothelial spheroids with mosaic gene expression using adeno-associated virus (AAV) transduction, with a future aim being to study the activity of post-zygotic mutations common to vascular malformations. Methods: In [...] Read more.
Aims: The goal of this study was to establish a simple model of 3D endothelial spheroids with mosaic gene expression using adeno-associated virus (AAV) transduction, with a future aim being to study the activity of post-zygotic mutations common to vascular malformations. Methods: In this study, 96-well U-bottom plates coated with a commercial repellent were seeded with two immortalized human endothelial cell lines and aggregation monitored using standard microscopy or live-cell analysis. The eGFP expression was used to monitor the AAV transduction. Results: HUVEC-TERT2 could not form spheroids spontaneously. The inclusion of collagen I in the growth medium could stimulate cell aggregation; however, these spheroids were not stable. In contrast, the hCMEC/D3 cells aggregated spontaneously and formed reproducible, robust 3D spheroids within 3 days, growing steadily for at least 4 weeks without the need for media refreshment. The hCMEC/D3 spheroids spontaneously developed a basement membrane, including collagen I, and expressed endothelial-specific CD31 at the spheroid surface. Serotypes AAV1 and AAV2QUADYF transduced these spheroids without toxicity and established sustained, mosaic eGFP expression. Conclusions: In the future, this simple approach to endothelial spheroid formation combined with live-cell imaging could be used to rapidly assess the 3D phenotypes and drug and radiation sensitivities arising from mosaic mutations common to brain vascular malformations. Full article
(This article belongs to the Section Basic and Translational Cardiovascular Research)
Show Figures

Figure 1

14 pages, 4206 KiB  
Article
Water-Borne Photo-Thermal Superhydrophobic Coating for Anti-Icing, Self-Cleaning and Oil–Water Separation
by Jinsong Huang, Shengqi Lu, Yan Hu, Liming Liu and Hui You
Coatings 2024, 14(6), 758; https://doi.org/10.3390/coatings14060758 - 14 Jun 2024
Cited by 3 | Viewed by 1809
Abstract
Superhydrophobic coatings with photo-thermal effects have advantages in anti-/de-icing and self-cleaning. Here, an eco-friendly and low-cost fabrication of superhydrophobic coating was proposed by spraying a water-borne suspension including carbon black and paraffin wax onto substrate-independent surfaces. The a water-borne suspension coated on stain [...] Read more.
Superhydrophobic coatings with photo-thermal effects have advantages in anti-/de-icing and self-cleaning. Here, an eco-friendly and low-cost fabrication of superhydrophobic coating was proposed by spraying a water-borne suspension including carbon black and paraffin wax onto substrate-independent surfaces. The a water-borne suspension coated on stain steel plate showed a strong water-repellence, delaying the ice freezing time to 665 s, which is much higher than that of bare stain steel plate (210 s) under the same experimental condition. The ice-melting time was measured as 120 s under a solar irradiation of 0.1 W/cm2, while the control group had no sign of ice-melting during the same time. As a concept of proof, the self-cleaning, anti-corrosion, and oil–water separation were enabled by spraying the water-borne suspension on various substrates, demonstrating its diverse performances. Hence, the water-borne superhydrophibic coating provides an efficient, safe, and sustainable solution for wettability-related applications. Full article
(This article belongs to the Special Issue Recent Advances in Hydrophobic Surface and Materials)
Show Figures

Figure 1

12 pages, 3482 KiB  
Article
Chemical Instability-Induced Wettability Patterns on Superhydrophobic Surfaces
by Tianchen Chen and Faze Chen
Micromachines 2024, 15(3), 329; https://doi.org/10.3390/mi15030329 - 27 Feb 2024
Cited by 4 | Viewed by 1494
Abstract
Chemical instability of liquid-repellent surfaces is one of the nontrivial hurdles that hinders their real-world applications. Although much effort has been made to prepare chemically durable liquid-repellent surfaces, little attention has been paid to exploit the instability for versatile use. Herein, we propose [...] Read more.
Chemical instability of liquid-repellent surfaces is one of the nontrivial hurdles that hinders their real-world applications. Although much effort has been made to prepare chemically durable liquid-repellent surfaces, little attention has been paid to exploit the instability for versatile use. Herein, we propose to create hydrophilic patterns on a superhydrophobic surface by taking advantage of its chemical instability induced by acid solution treatment. A superhydrophobic Cu(OH)2 nanoneedle-covered Cu plate that shows poor stability towards HCl solution (1.0 M) is taken as an example. The results show that 2.5 min of HCl solution exposure leads to the etching of Cu(OH)2 nanoneedles and the partial removal of the self-assembled fluoroalkyl silane molecular layer, resulting in the wettability transition from superhydrophobocity to hydrophilicity, and the water contact angle decreases from ~160° to ~30°. Hydrophilic dimples with different diameters are then created on the superhydrophobic surfaces by depositing HCl droplets with different volumes. Afterwards, the hydrophilic dimple-patterned superhydrophobic surfaces are used for water droplet manipulations, including controlled transfer, merging, and nanoliter droplet deposition. The results thereby verify the feasibility of creating wettability patterns on superhydrophobic surfaces by using their chemical instability towards corrosive solutions, which broadens the fabrication methods and applications of functional liquid-repellent surfaces. Full article
Show Figures

Figure 1

14 pages, 6565 KiB  
Article
Fabrication and Experimental Study of Micro/Sub-Micro Porous Copper Coating for Anti-Icing Application
by Jingxiang Chen, Cheng Fu, Junye Li, Weiyu Tang, Xinglong Gao and Jingzhi Zhang
Materials 2023, 16(10), 3774; https://doi.org/10.3390/ma16103774 - 16 May 2023
Cited by 3 | Viewed by 2048
Abstract
Micro and sub-micro-spherical copper powder slurries were elaborately prepared to fabricate different types of porous coating surfaces. These surfaces were further treated with low surface energy modification to obtain the superhydrophobic and slippery capacity. The surface wettability and chemical component were measured. The [...] Read more.
Micro and sub-micro-spherical copper powder slurries were elaborately prepared to fabricate different types of porous coating surfaces. These surfaces were further treated with low surface energy modification to obtain the superhydrophobic and slippery capacity. The surface wettability and chemical component were measured. The results showed that both the micro and sub-micro porous coating layer greatly increased the water-repellence capability of the substrate compared with the bare copper plate. Notably, the PFDTES-fluorinated coating surfaces yielded superhydrophobic ability against water under 0 °C with a contact angle of ~150° and a contact angle of hysteresis of ~7°. The contact angle results showed that the water repellency of the coating surface deteriorated with decreasing temperature from 10 °C to −20 °C, and the reason was probably recognized as the vapor condensation in the sub-cooled porous layer. The anti-icing test showed that the ice adhesion strengths of the micro and sub-micro-coated surfaces were 38.5 kPa and 30.2 kPa, producing a 62.8% and 72.7% decrease compared to the bare plate. The PFDTES-fluorinated and slippery liquid-infused porous coating surfaces both produced ultra-low ice adhesion strengths of 11.5–15.7 kPa compared with the other non-treated surfaces, which showed prominent properties for anti-icing and deicing requirement of the metallic surface. Full article
(This article belongs to the Topic Advanced Heat and Mass Transfer Technologies)
Show Figures

Figure 1

15 pages, 5486 KiB  
Article
Fabrication of Fluorine-Free Superhydrophobic Surface on Aluminum Substrate for Corrosion Protection and Drag Reduction
by Jingguo Fu, Yihe Sun, Jingye Wang, Hongpeng Zhang, Jifeng Zhang and Yulong Ji
J. Mar. Sci. Eng. 2023, 11(3), 520; https://doi.org/10.3390/jmse11030520 - 27 Feb 2023
Cited by 6 | Viewed by 1933
Abstract
A fluorine-free cerium palmitate superhydrophobic surface on an aluminum plate was fabricated via a two-step electrodeposition method. The mechanical durability, anti-corrosion performance, water repellency and drag reduction properties were tested. The results indicate that a superhydrophobic surface with a densely packed convex island [...] Read more.
A fluorine-free cerium palmitate superhydrophobic surface on an aluminum plate was fabricated via a two-step electrodeposition method. The mechanical durability, anti-corrosion performance, water repellency and drag reduction properties were tested. The results indicate that a superhydrophobic surface with a densely packed convex island shape with micro-pores and nano-scale strips was formed on the aluminum plate. Furthermore, the as-prepared surface exhibits excellent water-repelling ability with a water contact angle of 162.3° and a sliding angle of 1.5°. Owing to the protective effect of the convex island structure on the surface, the surface also shows superb mechanical durability, which is a shortcoming of ordinary electrodeposited surfaces. Moreover, compared with bare aluminum, the corrosion inhibition efficiency of the superhydrophobic surface is 99.55% and the surface drag decreases by 65.3% at a lower flow rate. Therefore, it is believed that the environmentally friendly fluorine-free superhydrophobic surface has promising potential applications in marine engineering. Full article
(This article belongs to the Special Issue Advances in Sensor Technology in Smart Ships and Offshore Facilities)
Show Figures

Graphical abstract

17 pages, 4070 KiB  
Article
A Cu/Polypyrrole-Coated Stainless Steel Mesh Membrane Cathode for Highly Efficient Electrocoagulation-Coupling Anti-Fouling Membrane Filtration
by Yuna Li, Zixin Hao, Jinglong Han, Yueyang Sun, Mengyao He, Yuang Yao, Fuhao Yang, Meijun Liu and Haifeng Zhang
Sustainability 2023, 15(2), 1107; https://doi.org/10.3390/su15021107 - 6 Jan 2023
Cited by 2 | Viewed by 2088
Abstract
Membrane filtration fouling has become a significant issue that restricts its wide application. The electrocoagulation (EC) technique combines a variety of synergistic pollutant removal technologies (including flocculation, redox, and air flotation), which can be an ideal pretreatment process for membrane filtration. In this [...] Read more.
Membrane filtration fouling has become a significant issue that restricts its wide application. The electrocoagulation (EC) technique combines a variety of synergistic pollutant removal technologies (including flocculation, redox, and air flotation), which can be an ideal pretreatment process for membrane filtration. In this work, a novel Cu2+-doped and polypyrrole-coated stainless steel mesh membrane (Cu/PPy–SSM) was prepared by direct current electrodeposition, and it was introduced in an electrocoagulation-membrane reactor (ECMR) to construct an EC–membrane filtration coupling system. The Cu/PPy–SSM was applied as the cathode, while an aluminum plate was used as the anode in the ECMR. The ECMR enabled an excellent humic acid (HA) removal performance and could effectively mitigate the fouling of the Cu/PPy–SSM. Its performance can be attributed to the following: (1) the Cu/PPy–SSM can repel the negatively charged pollutants under the applied electric field; (2) the cathodic hydrogen gas produced on the Cu/PPy–SSM restrains the compacting of the cake layer and delays degradation of membrane flux; and (3) the resultant porous loose structure can perform as a dynamic membrane, which can effectively promote the separation performance of the Cu/PPy–SSM. The resultant ECMR enabled an improved HA removal rate of 92.77%, and the membrane-specific flux could be stabilized at more than 86%. Response surface methodology (RSM) was used to optimize the operation parameters of the ECMR, and the predicted HA removal rate reached 93.01%. Both the experimental results and modelled predictions show that using the Cu/PPy–SSM as a cathode can lead to excellent performance of the ECMR. Full article
(This article belongs to the Special Issue Sustainable Advanced Water Treatment Technologies)
Show Figures

Figure 1

13 pages, 1896 KiB  
Article
Conducting Polymer-Infused Electrospun Fibre Mat Modified by POEGMA Brushes as Antifouling Biointerface
by Jesna Ashraf, Sandy Lau, Alireza Akbarinejad, Clive W. Evans, David E. Williams, David Barker and Jadranka Travas-Sejdic
Biosensors 2022, 12(12), 1143; https://doi.org/10.3390/bios12121143 - 7 Dec 2022
Cited by 6 | Viewed by 3078
Abstract
Biofouling on surfaces, caused by the assimilation of proteins, peptides, lipids and microorganisms, leads to contamination, deterioration and failure of biomedical devices and causes implants rejection. To address these issues, various antifouling strategies have been extensively studied, including polyethylene glycol-based polymer brushes. Conducting [...] Read more.
Biofouling on surfaces, caused by the assimilation of proteins, peptides, lipids and microorganisms, leads to contamination, deterioration and failure of biomedical devices and causes implants rejection. To address these issues, various antifouling strategies have been extensively studied, including polyethylene glycol-based polymer brushes. Conducting polymers-based biointerfaces have emerged as advanced surfaces for interfacing biological tissues and organs with electronics. Antifouling of such biointerfaces is a challenge. In this study, we fabricated electrospun fibre mats from sulphonated polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (sSEBS), infused with conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) (sSEBS-PEDOT), to produce a conductive (2.06 ± 0.1 S/cm), highly porous, fibre mat that can be used as a biointerface in bioelectronic applications. To afford antifouling, here the poly(oligo (ethylene glycol) methyl ether methacrylate) (POEGMA) brushes were grafted onto the sSEBS-PEDOT conducting fibre mats via surface-initiated atom transfer radical polymerization technique (SI-ATRP). For that, a copolymer of EDOT and an EDOT derivative with SI-ATRP initiating sites, 3,4-ethylenedioxythiophene) methyl 2-bromopropanoate (EDOTBr), was firstly electropolymerized on the sSEBS-PEDOT fibre mat to provide sSEBS-PEDOT/P(EDOT-co-EDOTBr). The POEGMA brushes were grafted from the sSEBS-PEDOT/P(EDOT-co-EDOTBr) and the polymerization kinetics confirmed the successful growth of the brushes. Fibre mats with 10-mers and 30-mers POEGMA brushes were studied for antifouling using a BCA protein assay. The mats with 30-mers grafted brushes exhibited excellent antifouling efficiency, ~82% of proteins repelled, compared to the pristine sSEBS-PEDOT fibre mat. The grafted fibre mats exhibited cell viability >80%, comparable to the standard cell culture plate controls. Such conducting, porous biointerfaces with POEGMA grafted brushes are suitable for applications in various biomedical devices, including biosensors, liquid biopsy, wound healing substrates and drug delivery systems. Full article
(This article belongs to the Special Issue Electrochemical (Bio-) Sensors in Biological Applications)
Show Figures

Figure 1

11 pages, 3684 KiB  
Article
BOA/DHB/Na: An Efficient UV-MALDI Matrix for High-Sensitivity and Auto-Tagging Glycomics
by Erina Barada and Hiroshi Hinou
Int. J. Mol. Sci. 2022, 23(20), 12510; https://doi.org/10.3390/ijms232012510 - 19 Oct 2022
Cited by 8 | Viewed by 3163
Abstract
Matrix selection is a critical factor for success in glycomics studies using matrix-assisted laser desorption/ionization–mass spectrometry (MALDI–MS). In this study, we evaluated and optimized a new solid ionic matrix—O-benzylhydroxylamine (BOA)/2,5-dihydroxybenzoic acid (DHB)/Na—containing BOA and a small amount of sodium as the [...] Read more.
Matrix selection is a critical factor for success in glycomics studies using matrix-assisted laser desorption/ionization–mass spectrometry (MALDI–MS). In this study, we evaluated and optimized a new solid ionic matrix—O-benzylhydroxylamine (BOA)/2,5-dihydroxybenzoic acid (DHB)/Na—containing BOA and a small amount of sodium as the counter salt of DHB. The concentration of a mixture of BOA/DHB/Na and glycans on a MALDI target plate led to O-benzyloxy tagging of the reducing ends of the glycans. The BOA/DHB/Na matrix showed excellent aggregation performance and the ability to form a homogeneous solid salt on the MALDI target plate with a water-repellent surface. In addition, the BOA/DHB/Na matrix showed a simple peak pattern with suppressed in-source and post-source decay of the reducing ends of the glycans, as well as improved ionization efficiency of glycans. Utilizing the characteristics of the BOA/DHB/Na matrix, O-glycan analysis of porcine stomach mucin showed excellent detection sensitivity and reproducibility of the peak patterns. This BOA/DHB/Na matrix can accelerate glycomics studies using MALDI–MS and, in combination with other organic salt-type matrices that we have developed, constitutes a valuable tool for glycomics studies. Full article
(This article belongs to the Special Issue Recent Advances in Glycoproteomics: Theory, Methods and Applications)
Show Figures

Figure 1

9 pages, 4659 KiB  
Article
Highly Water-Repellent and Anti-Reflective Glass Based on a Hierarchical Nanoporous Layer
by Shuntaro Minegishi, Nanako Ueda, Mizuki Saito, Junhwan Lee and Takuya Fujima
Coatings 2022, 12(7), 961; https://doi.org/10.3390/coatings12070961 - 7 Jul 2022
Cited by 3 | Viewed by 2657
Abstract
Optically anti-reflective and water-repellent glass is required for solar cell covers to improve power-generation efficiency due to transparency improvement and dirt removal. Research has been conducted in recent years on technologies that do not use fluorine materials. In this study, we focused on [...] Read more.
Optically anti-reflective and water-repellent glass is required for solar cell covers to improve power-generation efficiency due to transparency improvement and dirt removal. Research has been conducted in recent years on technologies that do not use fluorine materials. In this study, we focused on the anti-reflective properties and microstructure of hierarchical nanoporous layer (HNL) glass and used it as a substrate. As a result, we have achieved both strong anti-reflectivity and high water repellency on HNL glass by coating polydimethylsiloxane (PDMS) using baking and thermal chemical vapor deposition (CVD). The surfaces showed a significantly higher sliding velocity of water droplets than the PDMS-treated material on the flat glass plate. They also showed such water repellency that the droplets bounced off the surface. Full article
(This article belongs to the Special Issue Advanced Coatings for Surface Protection and Water/Oil Repellency)
Show Figures

Figure 1

12 pages, 3698 KiB  
Article
Performance of SS304 Modified by Silver Micro/Nano-Dendrite Coating with Hot-Water Super-Repellency in Simulated PEMFC Cathode Environment
by Junji Xuan, Bingzhi Li, Likun Xu, Zhaoqi Zhang, Yonglei Xin, Lili Xue and Li Li
Nanomaterials 2022, 12(10), 1726; https://doi.org/10.3390/nano12101726 - 18 May 2022
Cited by 2 | Viewed by 2277
Abstract
In this study, an silver (Ag) plating with micro/nano-dendrite structures is prepared on the 304 stainless steel (SS304) surface by potentiostatic deposition (Ag/SS304). After being modified by n-dodecyl mercaptan (NDM) with the low surface energy, the obtained sample (NDM@Ag/SS304) exhibits stable superhydrophobicity and [...] Read more.
In this study, an silver (Ag) plating with micro/nano-dendrite structures is prepared on the 304 stainless steel (SS304) surface by potentiostatic deposition (Ag/SS304). After being modified by n-dodecyl mercaptan (NDM) with the low surface energy, the obtained sample (NDM@Ag/SS304) exhibits stable superhydrophobicity and excellent hot-water repellency. The surface morphology and composition of NDM@Ag/SS304 are analyzed by scanning electron microscope (SEM), X-ray spectrometer (EDS), X-ray diffractometer (XRD), and X-ray photoelectron spectrometer (XPS) characterization. The electrochemical measurements, tests of water contact angle (WCA), and interfacial contact resistance (ICR) are employed to systematically study the performance of the NDM@Ag/SS304 in the simulated cathode environment of proton exchange membrane fuel cell (PEMFC). The results show that the NDM@Ag/SS304 has high corrosion potential (~0.25 V) and low corrosion current density (~4.04 μA/cm2); after potentiostatic polarization (0.6 V, 5 h), the NDM@Ag/SS304 also shows high superhydrophobic stability. Full article
Show Figures

Figure 1

14 pages, 9795 KiB  
Article
Investigation of the Wettability Properties of Different Textured Lead/Lead-Free Bronze Coatings
by Amani Khaskhoussi, Giacomo Risitano, Luigi Calabrese and Danilo D’Andrea
Lubricants 2022, 10(5), 82; https://doi.org/10.3390/lubricants10050082 - 3 May 2022
Cited by 12 | Viewed by 2870
Abstract
Hydraulic components are often subjected to sliding contacts under starved or mixed lubrication. The condition of starved lubrication occurs during the start-up phase of the hydraulic machines or at low working temperature, causing friction and wear of components such as the cylinder block [...] Read more.
Hydraulic components are often subjected to sliding contacts under starved or mixed lubrication. The condition of starved lubrication occurs during the start-up phase of the hydraulic machines or at low working temperature, causing friction and wear of components such as the cylinder block or the valve plate. The aim of this paper was to evaluate the hydrophobicity and oleophilic behavior of lead/lead-free bronze coatings under different texture conditions obtained by varying the diameter and the density of the dimples. The wettability tests were performed using sessile drop tests with oil and water liquids. The dimple parameters were analyzed using confocal microscopy, while the XRF analyses were performed to evaluate the composition of the bronze coatings. Based on the wettability measurements using oil and water, it was possible to assess that the porous surface acted as oil reservoirs that could prolong the life of lubricating oil layer, and may have resulted in a superior wear resistance. Furthermore, a relevant hydrophobicity was highlighted, suggesting that the surface texturing promoted the water-repellent barrier action on the surface. The experimental results showed that the discrepancy in surface properties in oil and water was raised when using the lead bronze coating. These coupled oleophilic and hydrophobic behaviors could play a beneficial role in sustaining the durability of a lubricating oil layer under a condition of continuous water-droplet impact. Full article
(This article belongs to the Special Issue Advances in Lubricated Bearings)
Show Figures

Figure 1

16 pages, 2117 KiB  
Article
Uniform Tumor Spheroids on Surface-Optimized Microfluidic Biochips for Reproducible Drug Screening and Personalized Medicine
by Neda Azizipour, Rahi Avazpour, Michael H. Weber, Mohamad Sawan, Abdellah Ajji and Derek H. Rosenzweig
Micromachines 2022, 13(4), 587; https://doi.org/10.3390/mi13040587 - 9 Apr 2022
Cited by 16 | Viewed by 4602
Abstract
Spheroids are recognized for resembling the important characteristics of natural tumors in cancer research. However, the lack of controllability of the spheroid size, form, and density in conventional spheroid culture methods reduces the reproducibility and precision of bioassay results and the assessment of [...] Read more.
Spheroids are recognized for resembling the important characteristics of natural tumors in cancer research. However, the lack of controllability of the spheroid size, form, and density in conventional spheroid culture methods reduces the reproducibility and precision of bioassay results and the assessment of drug-dose responses in spheroids. Nonetheless, the accurate prediction of cellular responses to drug compounds is crucial for developing new efficient therapeutic agents and optimizing existing therapeutic strategies for personalized medicine. We developed a surface-optimized PDMS microfluidic biochip to produce uniform and homogenous multicellular spheroids in a reproducible manner. This platform is surface optimized with 10% bovine serum albumin (BSA) to provide cell-repellent properties. Therefore, weak cell-surface interactions lead to the promotion of cell self-aggregations and the production of compact and uniform spheroids. We used a lung cancer cell line (A549), a co-culture model of lung cancer cells (A549) with (primary human osteoblasts, and patient-derived spine metastases cells (BML, bone metastasis secondary to lung). We observed that the behavior of cells cultured in three-dimensional (3D) spheroids within this biochip platform more closely reflects in vivo-like cellular responses to a chemotherapeutic drug, Doxorubicin, rather than on 24-well plates (two-dimensional (2D) model). It was also observed that the co-culture and patient-derived spheroids exhibited resistance to anti-cancer drugs more than the mono-culture spheroids. The repeatability of drug test results in this optimized platform is the hallmark of the reproducibility of uniform spheroids on a chip. This surface-optimized biochip can be a reliable platform to generate homogenous and uniform spheroids to study and monitor the tumor microenvironment and for drug screening. Full article
Show Figures

Figure 1

11 pages, 1966 KiB  
Article
Quiescence of Human Monocytes after Affinity Purification: A Novel Method Apt for Monocyte Stimulation Assays
by Minh-Thu Nguyen, Leonhard Hubert Schellerhoff, Silke Niemann, Frieder Schaumburg and Mathias Herrmann
Biomolecules 2022, 12(3), 395; https://doi.org/10.3390/biom12030395 - 3 Mar 2022
Cited by 4 | Viewed by 3702
Abstract
Several methods to isolate monocytes from whole blood have been previously published, with different advantages and disadvantages. For the purpose of cytokine release assessment upon external stimulation, the use of monocyte preparations consisting of non-activated cells is prerequisite. Affinity-isolated monocyte preparations from peripheral [...] Read more.
Several methods to isolate monocytes from whole blood have been previously published, with different advantages and disadvantages. For the purpose of cytokine release assessment upon external stimulation, the use of monocyte preparations consisting of non-activated cells is prerequisite. Affinity-isolated monocyte preparations from peripheral blood mononuclear cells (PBMCs), obtained via positive or negative selection using magnetic beads, released pro-inflammatory cytokines such as TNF-α and IL-6 even without adding external stimuli, hindering any assessment of an effect of bacterial lipoproteins on cell stimulation. Hence, the cell preparation protocol was modified by adding a quiescence step on repellent surface culture plates, dampening any monocyte pre-activation. This protocol now provides a robust method to prepare silent yet fully activatable, pure monocyte populations for further use in stimulus-elicited activation experiments. Full article
Show Figures

Figure 1

Back to TopTop