Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = renewable naphtha

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2516 KiB  
Review
Microbial Fuel Cells and Microbial Electrolysis Cells for the Generation of Green Hydrogen and Bioenergy via Microorganisms and Agro-Waste Catalysts
by Xolile Fuku, Ilunga Kamika and Tshimangadzo S. Munonde
Nanomanufacturing 2025, 5(1), 3; https://doi.org/10.3390/nanomanufacturing5010003 - 10 Feb 2025
Cited by 2 | Viewed by 2440
Abstract
A national energy crisis has emerged in South Africa due to the country’s increasing energy needs in recent years. The reliance on fossil fuels, especially oil and gas, is unsustainable due to scarcity, emissions, and environmental repercussions. Researchers from all over the world [...] Read more.
A national energy crisis has emerged in South Africa due to the country’s increasing energy needs in recent years. The reliance on fossil fuels, especially oil and gas, is unsustainable due to scarcity, emissions, and environmental repercussions. Researchers from all over the world have recently concentrated their efforts on finding carbon-free, renewable, and alternative energy sources and have investigated microbiology and biotechnology as a potential remedy. The usage of microbial electrolytic cells (MECs) and microbial fuel cells (MFCs) is one method for resolving the problem. These technologies are evolving as viable options for hydrogen and bioenergy production. The renewable energy technologies initiative in South Africa, which is regarded as a model for other African countries, has developed in the allocation of over 6000 MW of generation capacity to bidders across several technologies, primarily wind and solar. With a total investment value of R33.7 billion, the Eastern Cape’s renewable energy initiatives have created 18,132 jobs, with the province awarded 16 wind farms and one solar energy farm. Utilizing wastewater as a source of energy in MFCs has been recommended as most treatments, such as activated sludge processes and trickling filter plants, require roughly 1322 kWh per million gallons, whereas MFCs only require a small amount of external power to operate. The cost of wastewater treatment using MFCs for an influent flow of 318 m3 h−1 has been estimated to be only 9% (USD 6.4 million) of the total cost of treatment by a conventional wastewater treatment plant (USD 68.2 million). Currently, approximately 500 billion cubic meters of hydrogen (H2) are generated worldwide each year, exhibiting a growth rate of 10%. This production primarily comes from natural gas (40%), heavy oils and naphtha (30%), coal (18%), electrolysis (4%), and biomass (1%). The hydrogen produced is utilized in the manufacturing of ammonia (49%), the refining of petroleum (37%), the production of methanol (8%), and in a variety of smaller applications (6%). Considering South Africa’s energy issue, this review article examines the production of wastewater and its impacts on society as a critical issue in the global scenario and as a source of green energy. Full article
Show Figures

Figure 1

15 pages, 1692 KiB  
Article
PTG-HEFA Hybrid Refinery as Example of a SynBioPTx Concept—Results of a Feasibility Analysis
by Franziska Müller-Langer, Katja Oehmichen, Sebastian Dietrich, Konstantin M. Zech, Matthias Reichmuth and Werner Weindorf
Appl. Sci. 2019, 9(19), 4047; https://doi.org/10.3390/app9194047 - 27 Sep 2019
Cited by 8 | Viewed by 7099
Abstract
Limited alternative fuels for a CO2-neutral aviation sector have already been ASTM certified; synthetic paraffinic kerosene from hydrotreated esters and fatty acids (HEFA-SPK) is one of these—a sustainable aviation fuel. With the hypothesis to improve the greenhouse gas (GHG) balance of [...] Read more.
Limited alternative fuels for a CO2-neutral aviation sector have already been ASTM certified; synthetic paraffinic kerosene from hydrotreated esters and fatty acids (HEFA-SPK) is one of these—a sustainable aviation fuel. With the hypothesis to improve the greenhouse gas (GHG) balance of a HEFA plant by realizing the required hydrogen supply via electrolysis—power to gas (PTG)—an exemplary SynBioPTx approach is investigated in a comprehensive feasibility study, which is, regarding this comparatively new approach, a novelty in its extent. About 10 scenarios are analysed by technical, environmental, and economic aspects. Within the alternative scenarios on feedstocks, electricity supply, necessary hydrogen supply, and different main products are analysed. For different plant designs of the hybrid refinery, mass and energy balances are elaborated, along with the results of the technical assessment. As a result of this environmental assessment, the attainment of at least 50% GHG mitigation might be possible. GHG highly depends on the renewability grade of the hydrogen provision as well as on the used feedstock. One important conclusion of this economic assessment is that total fuel production costs of 1295 to 1800 EUR t−1 are much higher than current market prices for jet fuel. The scenario in which hydrogen is produced by steam reforming of internally produced naphtha proves to be the best combination of highly reduced GHG emissions and low HEFA-SPK production costs. Full article
(This article belongs to the Special Issue Cutting-Edge Technologies for Renewable Energy Production and Storage)
Show Figures

Figure 1

10 pages, 213 KiB  
Article
Feasibility of New Liquid Fuel Blends for Medium-Speed Engines
by Katriina Sirviö, Seppo Niemi, Sonja Heikkilä, Jukka Kiijärvi, Michaela Hissa and Erkki Hiltunen
Energies 2019, 12(14), 2799; https://doi.org/10.3390/en12142799 - 20 Jul 2019
Cited by 6 | Viewed by 2874
Abstract
Several sustainable liquid fuel alternatives are needed for different compression ignition (CI) engine applications. In the present study, five different fuel blends were investigated. Rapeseed methyl ester (RME) was used as the basic renewable fuel, and it was blended with low-sulfur light fuel [...] Read more.
Several sustainable liquid fuel alternatives are needed for different compression ignition (CI) engine applications. In the present study, five different fuel blends were investigated. Rapeseed methyl ester (RME) was used as the basic renewable fuel, and it was blended with low-sulfur light fuel oil (LFO), kerosene, marine gas oil (MGO), and naphtha. Of these fuels, MGO is a circulation economy fuel, manufactured from used lubricants. Naphtha is renewable as it is a by-product of renewable diesel production process using tall oil as feedstock. In addition to RME, naphtha was also blended with LFO. The aim of the current study was to determine the most important properties of the five fuel blends in order to gather fundamental knowledge about their suitability for medium-speed CI engines. The share of renewables within these five blends varied from 20 to 100 vol.%. The properties that were investigated and compared were the cetane number, distillation, density, viscosity, cold properties, and lubricity. According to the results, all the studied blends may be operable in medium-speed engines. Blending of new, renewable fuels with more conventional ones will help ease the technical transitional period as long as the availability of renewable fuels is limited. Full article
(This article belongs to the Special Issue Renewable energy solutions for the Baltic–Nordic region)
15 pages, 2117 KiB  
Article
Combustion Studies of a Non-Road Diesel Engine with Several Alternative Liquid Fuels
by Michaela Hissa, Seppo Niemi, Katriina Sirviö, Antti Niemi and Teemu Ovaska
Energies 2019, 12(12), 2447; https://doi.org/10.3390/en12122447 - 25 Jun 2019
Cited by 12 | Viewed by 4761
Abstract
Sustainable liquid fuels will be needed for decades to fulfil the world’s growing energy demands. Combustion systems must be able to operate with a variety of renewable and sustainable fuels. This study focused on how the use of various alternative fuels affects combustion, [...] Read more.
Sustainable liquid fuels will be needed for decades to fulfil the world’s growing energy demands. Combustion systems must be able to operate with a variety of renewable and sustainable fuels. This study focused on how the use of various alternative fuels affects combustion, especially in-cylinder combustion. The study investigated light fuel oil (LFO) and six alternative liquid fuels in a high-speed, compression-ignition (CI) engine to understand their combustion properties. The fuels were LFO (baseline), marine gas oil (MGO), kerosene, rapeseed methyl ester (RME), renewable diesel (HVO), renewable wood-based naphtha and its blend with LFO. The heat release rate (HRR), mass fraction burned (MFB) and combustion duration (CD) were determined at an intermediate speed at three loads. The combustion parameters seemed to be very similar with all studied fuels. The HRR curve was slightly delayed with RME at the highest load. The combustion duration of neat naphtha decreased compared to LFO as the engine load was reduced. The MFB values of 50% and 90% occurred earlier with neat renewable naphtha than with other fuels. It was concluded that with the exception of renewable naphtha, all investigated alternative fuels can be used in the non-road engine without modifications. Full article
(This article belongs to the Special Issue Renewable energy solutions for the Baltic–Nordic region)
Show Figures

Figure 1

14 pages, 3528 KiB  
Article
Effect of Alternative Liquid Fuels on the Exhaust Particle Size Distributions of a Medium-Speed Diesel Engine
by Teemu Ovaska, Seppo Niemi, Katriina Sirviö, Sonja Heikkilä, Kaj Portin and Tomas Asplund
Energies 2019, 12(11), 2050; https://doi.org/10.3390/en12112050 - 29 May 2019
Cited by 5 | Viewed by 3145
Abstract
We mainly aimed to determine how alternative liquid fuels affect the exhaust particle size distributions (PSD) emitted by a medium-speed diesel engine. The selected alternative fuels included: circulation-origin marine gas oil (MGO), the 26/74 vol. % blend of renewable naphtha and baseline low-sulfur [...] Read more.
We mainly aimed to determine how alternative liquid fuels affect the exhaust particle size distributions (PSD) emitted by a medium-speed diesel engine. The selected alternative fuels included: circulation-origin marine gas oil (MGO), the 26/74 vol. % blend of renewable naphtha and baseline low-sulfur marine light fuel oil (LFO), and kerosene. PSDs were measured by means of an engine exhaust particle sizer from the raw exhaust of a four-cylinder, turbocharged, intercooled engine. During the measurements, the engine was loaded by an alternator, the maximum power output being set at 600 kW(e) at a speed of 1000 rpm. The partial loads of 450, 300, 150 and 60 kW(e) were also used for measurements. At each load, the PSDs had a distinct peak between 20 and 100 nm regardless of fuel. Relative to the other fuels, circulation-origin MGO emitted the lowest particle numbers at several loads despite having the highest viscosity and highest density. Compared to baseline LFO and kerosene, MGO and the blend of renewable naphtha and LFO were more beneficial in terms of total particle number (TPN). Irrespective of the load or fuel, the TPN consisted mainly of particles detected above the 23 nm size category. Full article
(This article belongs to the Special Issue Renewable energy solutions for the Baltic–Nordic region)
Show Figures

Figure 1

12 pages, 7083 KiB  
Article
Technological Innovation in Biomass Energy for the Sustainable Growth of Textile Industry
by Leonel Jorge Ribeiro Nunes, Radu Godina and João Carlos de Oliveira Matias
Sustainability 2019, 11(2), 528; https://doi.org/10.3390/su11020528 - 20 Jan 2019
Cited by 29 | Viewed by 6290
Abstract
The growing increase in world energy consumption favors the search for renewable energy sources. One of the existing options for the growth and sustainable development of such types of sources is through the use of biomass as an input. The employment of biomass [...] Read more.
The growing increase in world energy consumption favors the search for renewable energy sources. One of the existing options for the growth and sustainable development of such types of sources is through the use of biomass as an input. The employment of biomass as solid fuel is widely studied and is no longer a novelty nor presents any difficulty from the technical point of view. It presents, however, logistic obstacles, thus not allowing their direct dissemination in every organization that is willing to replace it as an energy source. Use of biomass can be rewarding due to the fact that it can bring significant economic gains attained due to the steadiness of the biomass price in Portugal. However, the price may rise as predicted in the coming years, although it will be a gradual rising. The main goal of this study was to analyze whether biomass in the case of the Portuguese textile industry can be a viable alternative that separates the possibility of sustainable growth from the lack of competitiveness due to high energy costs. The study showed that biomass can be a reliable, sustainable and permanent energy alternative to more traditional energy sources such as propane gas, naphtha and natural gas for the textile industry. At the same time, it can bring savings of 35% in energy costs related to steam generation. Also, with new technology systems related to the Internet of Things, a better on-time aware of needs, energy production and logistic chain information will be possible. Full article
(This article belongs to the Special Issue Sustainable Energy Systems: From Primary to End-Use)
Show Figures

Figure 1

Back to TopTop