Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline

Search Results (2)

Search Parameters:
Keywords = regenerated cellulose nanoparticles (RCNs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6635 KiB  
Article
In Situ Synthesis of Environmentally Friendly Waterborne Polyurethane Extended with Regenerated Cellulose Nanoparticles for Enhanced Mechanical Performances
by Soon Mo Choi, Soo Young Lee, Sunhee Lee, Sung Soo Han and Eun Joo Shin
Polymers 2023, 15(6), 1541; https://doi.org/10.3390/polym15061541 - 20 Mar 2023
Cited by 6 | Viewed by 2384
Abstract
The development of waterborne polyurethane (WPU) has been stimulated as an alternative to solvent-based polyurethanes due to low-VOC alternatives and reduced exposure to solvents. However, their relatively low mechanical performance and degradation have presented challenges in their wide application. Here, we developed environmentally-friendly [...] Read more.
The development of waterborne polyurethane (WPU) has been stimulated as an alternative to solvent-based polyurethanes due to low-VOC alternatives and reduced exposure to solvents. However, their relatively low mechanical performance and degradation have presented challenges in their wide application. Here, we developed environmentally-friendly bio polyol-based WPU nanocomposite dispersions and films, and presented the optimal process conditions for their manufacture. Additionally, the condition was established without using harmful catalysts or ethyl methyl ketone (MEK) during the polymerization. Moreover, regenerated cellulose nanoparticles (RCNs) were employed as natural chain-extenders in order to improve the biodegradability and mechanical performances of the nanocomposite films. The RCNs have a lower crystallinity compared to cellulose nanocrystals (CNCs), allowing them to possess high toughness without interfering with the elastomeric properties of polyurethane. The prepared CWPU/RCNs nanocomposite films exhibited high toughness of 58.8 ± 3 kgf∙mm and elongation at break of 240 ± 20%. In addition, depending on the molar ratio of NCO/OH, the polyurethane particle size is variously controlled from 70 to 230 nm, enabling to fabricate their dispersions with various transmittances. We believe that our findings not only open a meaningful path toward green elastomers with biodegradability but provides the design concept for bio-elastomers in order to develop industrial elastomers with mechanical and thermal properties. Full article
Show Figures

Graphical abstract

13 pages, 4527 KiB  
Article
One-Pot Processing of Regenerated Cellulose Nanoparticles/Waterborne Polyurethane Nanocomposite for Eco-friendly Polyurethane Matrix
by Soon Mo Choi, Min Woong Lee and Eun Joo Shin
Polymers 2019, 11(2), 356; https://doi.org/10.3390/polym11020356 - 18 Feb 2019
Cited by 26 | Viewed by 5104
Abstract
Regenerated cellulose nanoparticles (RCNs) reinforced waterborne polyurethanes (WPU) were developed to improve mechanical properties as well as biodegradability by using a facile, eco-friendly approach, and introducing much stronger chemical bonding than common physical bonding between RCNs and WPU. Firstly, RCNs which have an [...] Read more.
Regenerated cellulose nanoparticles (RCNs) reinforced waterborne polyurethanes (WPU) were developed to improve mechanical properties as well as biodegradability by using a facile, eco-friendly approach, and introducing much stronger chemical bonding than common physical bonding between RCNs and WPU. Firstly, RCNs which have an effect on improving the solubility and stability of a solution, thereby resulting in lower crystallinity, were fabricated by using a NaOH/urea solution. In addition, the stronger chemical bond between RCNs and WPU was here introduced by regarding at which stage in particular added RCNs worked best on strengthening their bond in the process of WPU synthesis. The chemical structure, mechanical, particle size and distribution, viscosity, and thermal properties of the resultant RCNs/WPU nanocomposites were investigated by Fourier transform infrared analysis (FTIR), Zeta-potential analysis, viscometer, thermogravimetric analysis (TGA), Instron, and dynamic mechanical analysis (DMA). The results of all characterizations indicated that the RCNs/WPU-DMF associated with the addition of RCNs in DMF-dispersed step resulted in more effectively crosslinked between WPU and nano-fillers of nanocellulose particles in the dispersion than Acetone and Water-dispersed steps, thereby attributing to novel interactions formed between RCNs and WPU. Full article
(This article belongs to the Special Issue Functional Polyurethanes – In Memory of Prof. József Karger-Kocsis)
Show Figures

Graphical abstract

Back to TopTop