Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = rVCG-MECA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5686 KB  
Article
A VCG-Based Multiepitope Chlamydia Vaccine Incorporating the Cholera Toxin A1 Subunit (MECA) Confers Protective Immunity Against Transcervical Challenge
by Fnu Medhavi, Tayhlor Tanner, Shakyra Richardson, Stephanie Lundy, Yusuf Omosun and Francis O. Eko
Biomedicines 2025, 13(2), 288; https://doi.org/10.3390/biomedicines13020288 - 24 Jan 2025
Viewed by 1893
Abstract
Background/Objectives: We generated a novel recombinant Vibrio cholerae ghost (rVCG)-based subunit vaccine incorporating the A1 subunit of cholera toxin (CTA1) and a multiepitope Chlamydia trachomatis (CT) antigen (MECA) derived from five chlamydial outer membrane proteins (rVCG-MECA). The ability of this vaccine to [...] Read more.
Background/Objectives: We generated a novel recombinant Vibrio cholerae ghost (rVCG)-based subunit vaccine incorporating the A1 subunit of cholera toxin (CTA1) and a multiepitope Chlamydia trachomatis (CT) antigen (MECA) derived from five chlamydial outer membrane proteins (rVCG-MECA). The ability of this vaccine to protect against a CT transcervical challenge was evaluated. Methods: Female C57BL/6J mice were immunized thrice at two-week intervals with rVCG-MECA or rVCG-gD2 (antigen control) via the intramuscular (IM) or intranasal (IN) route. PBS-immunized mice or mice immunized with live CT served as negative and positive controls, respectively. Results: Vaccine delivery stimulated robust humoral and cell-mediated immune effectors, characterized by local mucosal and systemic CT-specific IgG, IgG2c, and IgA antibody and IFN-γ (Th1 cytokine) responses. The elicited mucosal and systemic IgG2c and IgA antibody responses persisted for 16 weeks post-immunization. Immunization with rVCG-MECA afforded protection comparable to that provided by IN immunization with live CT EBs without any side effects, irrespective of route of vaccine delivery. Conclusions: The results underline the potential of a multiepitope vaccine as a promising resource for protecting against CT genital infection and the potential of CTA1 on the VCG platform as a mucosal and systemic adjuvant for developing CT vaccines. Full article
(This article belongs to the Section Microbiology in Human Health and Disease)
Show Figures

Figure 1

Back to TopTop