Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = quinoa-to-chickpea ratio

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2880 KB  
Article
Tailoring Rheological, Viscoelastic, and Starch Structural Properties in Plant-Based Beverages via Homolactic Fermentation of Quinoa and Chickpea Flour Blends
by John Hurtado-Murillo, Wendy Franco and Ingrid Contardo
Polysaccharides 2025, 6(4), 92; https://doi.org/10.3390/polysaccharides6040092 - 10 Oct 2025
Viewed by 1200
Abstract
This study investigated the effects of homolactic fermentation on the rheological, viscoelastic, and starch structural properties of quinoa–chickpea flour-based beverages. Three formulations with increasing proportions of chickpea flour (10, 25, and 50%) were fermented for 10 h with Lactobacillus acidophilus LA-5. Apparent viscosity, [...] Read more.
This study investigated the effects of homolactic fermentation on the rheological, viscoelastic, and starch structural properties of quinoa–chickpea flour-based beverages. Three formulations with increasing proportions of chickpea flour (10, 25, and 50%) were fermented for 10 h with Lactobacillus acidophilus LA-5. Apparent viscosity, deformation capacity, storage modulus (G′), and pasting behavior were measured along with FTIR-based analysis of the starch molecular structure. All fermented samples reached pH values < 4.5 and exhibited improved rheological properties with significant increases in viscosity and storage modulus (G′), particularly in the 50:50 blend. These enhancements were attributed to the synergistic effects of homolactic fermentation and inherent properties of chickpea starch, particularly its high amylose content, large granule size, and long amylopectin chains. FTIR analysis revealed that the short-range molecular order of starches was preserved after fermentation in all beverages, except for the 50:50 blend, as evidenced by the increased degree of order (DO) and double helix (DD) ratios. Overall, these findings demonstrate that integrating chickpea flour and controlled homolactic fermentation is an effective strategy for tailoring the viscosity and stability of plant-based probiotic beverages, providing a theoretical basis for the development of clean-label and functional fermented plant-based systems. Full article
Show Figures

Figure 1

30 pages, 2315 KB  
Article
Exploring the Development of a Clean-Label Vegan Burger Enriched with Fermented Microalgae
by Joseane C. Bassani, Valter F. R. Martins, Joana Barbosa, Marta Coelho, Clara Sousa, Juliana Steffens, Geciane T. Backes, Hugo Pereira, Manuela E. Pintado, Paula C. Teixeira, Alcina M. M. B. Morais and Rui M. S. C. Morais
Foods 2025, 14(16), 2884; https://doi.org/10.3390/foods14162884 - 20 Aug 2025
Cited by 3 | Viewed by 1333
Abstract
Haematococcus pluvialis and Porphyridium cruentum are red microalgae with high biotechnological potential due to their rich composition of bioactive compounds. However, their intense flavor limits their application in food products. This study evaluated the impact of fermentation with Lactiplantibacillus plantarum (30 °C for [...] Read more.
Haematococcus pluvialis and Porphyridium cruentum are red microalgae with high biotechnological potential due to their rich composition of bioactive compounds. However, their intense flavor limits their application in food products. This study evaluated the impact of fermentation with Lactiplantibacillus plantarum (30 °C for 48 h; LAB-to-biomass ratio of 0.1:1; 106 CFU/mL) on the physicochemical and functional properties of H. pluvialis and P. cruentum biomasses. Particular attention was given to antioxidant activity (ABTS and ORAC assays), color, amino acid profiles, and volatile organic compound (VOC) profiles, all of which may influence sensory characteristics. Results demonstrated that non-fermented H. pluvialis exhibited significantly higher antioxidant activity (AA) than P. cruentum. After fermentation, H. pluvialis showed an ABTS value of 3.22 ± 0.35 and an ORAC value of 54.32 ± 1.79 µmol TE/100 mg DW, while P. cruentum showed an ABTS of 0.26 ± 0.00 and an ORAC of 3.11 ± 0.13 µmol TE/100 mg DW. Total phenolic content (TPC) of fermented H. pluvialis and P. cruentum was 1.08 ± 0.23 and 0.18 ± 0.026 mg GAE/100 mg DW, respectively. Both AA and TPC increased after fermentation. Fermentation also significantly affected biomass color. FTIR analysis showed intensification of protein and carbohydrate vibrational bands post-fermentation. GC-MS analysis of VOCs showed that P. cruentum contained 42 VOCs before fermentation, including trans-β-ionone, 4-ethyl-6-hepten-3-one, hexanal, and heptadienal, which are responsible for fishy and algal odors. Fermentation with Lb. plantarum significantly reduced these compounds, lowering trans-β-ionone to 0.1453 mg/L and eliminating 4-ethyl-6-hepten-3-one entirely. H. pluvialis contained 22 VOCs pre-fermentation; fermentation eliminated hexanal and reduced heptadienal to 0.1747 ± 0.0323 mg/L. These changes contributed to improved sensory profiles. Fermentation also induced significant changes in the amino acid profiles of both microalgae. The fermented biomasses were incorporated into vegan burgers made from chickpea, lentil, and quinoa. Color evaluation showed more stable and visually appealing tones, while texture remained within desirable consumer parameters. These findings suggest that Lb. plantarum fermentation is an effective strategy for improving the sensory and functional characteristics of microalgal biomass, promoting their use as sustainable, value-added ingredients in innovative plant-based foods. Full article
Show Figures

Graphical abstract

20 pages, 1439 KB  
Article
Development of a Novel Gluten-Free Cookie Premix Enriched with Natural Flours Using an Extreme Vertices Design: Physical, Sensory, Rheological, and Antioxidant Characteristics
by Sabrina Ferradji, Hayat Bourekoua, Fairouz Djeghim, Radia Ayad, Marta Krajewska and Renata Różyło
Appl. Sci. 2024, 14(22), 10391; https://doi.org/10.3390/app142210391 - 12 Nov 2024
Cited by 1 | Viewed by 2924
Abstract
This work aimed to develop novel alternative gluten-free premixes for use in the production of cookies by optimizing the formulation of three different starches (corn, potato, and tapioca starch) in a rice/corn formula and then enriching the optimized formula with various natural flours [...] Read more.
This work aimed to develop novel alternative gluten-free premixes for use in the production of cookies by optimizing the formulation of three different starches (corn, potato, and tapioca starch) in a rice/corn formula and then enriching the optimized formula with various natural flours (acorn, soy, chestnut, chickpea, millet, and quinoa). An extreme vertices mixture design was used to optimize the mixing sub-part consisting of 30% (w/w) of starches. The enriched gluten-free cookies were characterized by physical, rheological, antioxidant, color, and sensory properties. An optimum was obtained by mixing 18.5084 g of corn starch, 6 g of potato starch, and 5.4916 g of tapioca starch. The enrichment results indicated that soy-enriched gluten-free cookies have a high specific volume (2.428 cm3/g) with the highest spread ratio (12.25) compared to other cookies. The rheological properties of enriched gluten-free doughs indicated a higher value of the consistency coefficient (K) of soy-enriched gluten-free cookies. The antioxidant characteristics were enhanced by replacing corn with several types of flours, with higher TPC for acorn (2.83 mg GAE/g dw) and soy-enriched cookies (2.49 mg GAE/g dw) with better antioxidant activities (DPPH, ABTS, and RED). The tasters gave all the cookies favorable ratings for overall acceptability. With an average rating of 7.09, cookies enhanced with chickpea flour have a high acceptability compared to the other cookies. Considering all the tested parameters, PCA analysis clustered millet, corn, quinoa, and chestnut gluten-free enriched cookies into the same group. However, acorn and soy cookies were placed in a separate group, and chickpea-enriched cookies were classified separately. Full article
(This article belongs to the Special Issue Bio-Based Products and Co-products Applications)
Show Figures

Figure 1

15 pages, 2366 KB  
Article
Role of Quinoa (Chenopodium quinoa Willd) and Chickpea (Cicer arietinum L.) Ratio in Physicochemical Stability and Microbiological Quality of Fermented Plant-Based Beverages during Storage
by John Hurtado-Murillo, Wendy Franco and Ingrid Contardo
Foods 2024, 13(15), 2462; https://doi.org/10.3390/foods13152462 - 4 Aug 2024
Cited by 10 | Viewed by 3081
Abstract
Three different fermented plant-based beverages were prepared and stored for a long period (50 days) to assess the effect of the quinoa-to-chickpea ratio on physicochemical stability and microbiological quality. Physicochemical stability was evaluated based on pH, acidity, Brix degrees, water-holding capacity (WHC), viscosity, [...] Read more.
Three different fermented plant-based beverages were prepared and stored for a long period (50 days) to assess the effect of the quinoa-to-chickpea ratio on physicochemical stability and microbiological quality. Physicochemical stability was evaluated based on pH, acidity, Brix degrees, water-holding capacity (WHC), viscosity, and viscoelasticity. At the end of the long-term storage period, the pH, acidity, and WHC remained stable. During the entire storage period, the beverages maintained good bacterial, fungal, and lactic acid bacteria (LAB) counts. Quinoa and chickpea flour ratios of 50% showed a higher viscosity (18 Pa.s) and WHC (65%) during short-term storage (0–30 d), indicating that the presence of chickpea flour had a positive effect on these parameters, possibly because chickpea starch contains higher amounts of amylose and long-branch chain amylopectin, which impacts the retrogradation pattern under acidic and refrigerated conditions. However, at the end of storage (50 days), the same blend had a higher acidity, lower viscosity (0.78 Pa.s), and lower LAB counts (~1 × 108 CFU/mL), indicating that the increase in chickpea flour had an adverse long-term effect on these parameters. These results suggest that although different ratios of plant sources can improve the physical aspects, they need to be incorporated in a balanced manner to avoid negative effects on both short- and long-term storage, owing to the incorporation of different types of starches and proteins affecting the stability of the system. Full article
Show Figures

Graphical abstract

25 pages, 2527 KB  
Article
Statistical Approach to Potentially Enhance the Postbiotication of Gluten-Free Sourdough
by Bogdan Păcularu-Burada, Mihaela Turturică, João Miguel Rocha and Gabriela-Elena Bahrim
Appl. Sci. 2021, 11(11), 5306; https://doi.org/10.3390/app11115306 - 7 Jun 2021
Cited by 27 | Viewed by 4419
Abstract
Fermented products are permanently under the attention of scientists and consumers, both due to nutritional importance and health promoting effects. The fermented functional foods contribute to a more balanced diet and increase the immune responses (among many other health effects) with positive implications [...] Read more.
Fermented products are permanently under the attention of scientists and consumers, both due to nutritional importance and health promoting effects. The fermented functional foods contribute to a more balanced diet and increase the immune responses (among many other health effects) with positive implications for quality of life. In this sense, improving the sourdough’s fermentation to boost the biotic (postbiotic and paraprobiotic) properties of the sourdough-based products has positive impacts on the nutritional and functional properties of the final baked products. These enhanced sourdoughs can be obtained in controlled fermentation conditions and used as sourdough bread improvers or novel bioingredients. In this context, our work aimed to optimize, using statistical tools, a gluten-free sourdough based on chickpea, quinoa, and buckwheat fermentation with selected lactic acid bacteria (LAB) to enhance its postbiotic properties. The most important biotechnological parameters were selected by Plackett–Burman Design (PBD) and then Response Surface Methodology (RSM) was applied to evaluate the interactions between the selected factors to maximize the gluten-free sourdough’s properties. As a result, the optimized fermented sourdough had antimicrobial activity with inhibition ratios between 71 and 100% against the Aspergillus niger, Aspergillus flavus, Penicillium spp. molds and against the Bacillus spp endospore-forming Gram-positive rods. The optimized variant showed a total titratable acidity (TTA) of 40.2 mL NaOH 0.1N. Finally, the high-performance liquid chromatography (HPLC) analysis highlighted a heterofermentative profile for the organic acids from the optimized sourdough. Among flavonoids and polyphenols, the level of caffeic and vanillic acids increased after lactic acid fermentation. The comparison between the optimized sourdough and the control evidenced significant differences in the metabolite profiles, thus highlighting its potential postbiotication effect. Full article
(This article belongs to the Special Issue Advances of Lactic Fermentation for Functional Food Production)
Show Figures

Figure 1

Back to TopTop