Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = quiet stance symmetry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 954 KiB  
Article
Assessing Gait & Balance in Adults with Mild Balance Impairment: G&B App Reliability and Validity
by Hina Shafi, Waqar Ahmed Awan, Sharon Olsen, Furqan Ahmed Siddiqi, Naureen Tassadaq, Usman Rashid and Imran Khan Niazi
Sensors 2023, 23(24), 9718; https://doi.org/10.3390/s23249718 - 8 Dec 2023
Cited by 3 | Viewed by 2414
Abstract
Smartphone applications (apps) that utilize embedded inertial sensors have the potential to provide valid and reliable estimations of different balance and gait parameters in older adults with mild balance impairment. This study aimed to assess the reliability, validity, and sensitivity of the Gait&Balance [...] Read more.
Smartphone applications (apps) that utilize embedded inertial sensors have the potential to provide valid and reliable estimations of different balance and gait parameters in older adults with mild balance impairment. This study aimed to assess the reliability, validity, and sensitivity of the Gait&Balance smartphone application (G&B App) for measuring gait and balance in a sample of middle- to older-aged adults with mild balance impairment in Pakistan. Community-dwelling adults over 50 years of age (N = 83, 50 female, range 50–75 years) with a Berg Balance Scale (BBS) score between 46/56 and 54/56 were included in the study. Data collection involved securing a smartphone to the participant’s lumbosacral spine. Participants performed six standardized balance tasks, including four quiet stance tasks and two gait tasks (walking looking straight ahead and walking with head turns). The G&B App collected accelerometry data during these tasks, and the tasks were repeated twice to assess test-retest reliability. The tasks in quiet stance were also recorded with a force plate, a gold-standard technology for measuring postural sway. Additionally, participants completed three clinical measures, the BBS, the Functional Reach Test (FRT), and the Timed Up and Go Test (TUG). Test-retest reliability within the same session was determined using intraclass correlation coefficients (ICCs) and the standard error of measurement (SEM). Validity was evaluated by correlating the G&B App outcomes against both the force plate data and the clinical measures using Pearson’s product-moment correlation coefficients. To assess the G&B App’s sensitivity to differences in balance across tasks and repetitions, one-way repeated measures analyses of variance (ANOVAs) were conducted. During quiet stance, the app demonstrated moderate reliability for steadiness on firm (ICC = 0.72) and compliant surfaces (ICC = 0.75) with eyes closed. For gait tasks, the G&B App indicated moderate to excellent reliability when walking looking straight ahead for gait symmetry (ICC = 0.65), walking speed (ICC = 0.93), step length (ICC = 0.94), and step time (ICC = 0.84). The TUG correlated with app measures under both gait conditions for walking speed (r −0.70 and 0.67), step length (r −0.56 and −0.58), and step time (r 0.58 and 0.50). The BBS correlated with app measures of walking speed under both gait conditions (r 0.55 and 0.51) and step length when walking with head turns (r = 0.53). Force plate measures of total distance wandered showed adequate to excellent correlations with G&B App measures of steadiness. Notably, G&B App measures of walking speed, gait symmetry, step length, and step time, were sensitive to detecting differences in performance between standard walking and the more difficult task of walking with head turns. This study demonstrates the G&B App’s potential as a reliable and valid tool for assessing some gait and balance parameters in middle-to-older age adults, with promise for application in low-income countries like Pakistan. The app’s accessibility and accuracy could enhance healthcare services and support preventive measures related to fall risk. Full article
(This article belongs to the Special Issue Sensors in Neurophysiology and Neurorehabilitation (2nd Edition))
Show Figures

Figure 1

19 pages, 1401 KiB  
Article
Post-Effect on the Centre of Feet Pressure during Stance by Continuous Asymmetric Mediolateral Translations of a Supporting Platform—A Preliminary Study in Healthy Young Adults
by Stefania Sozzi, Antonio Nardone, Stefano Corna and Marco Schieppati
Appl. Sci. 2020, 10(17), 5969; https://doi.org/10.3390/app10175969 - 28 Aug 2020
Viewed by 2631
Abstract
Various diseases are associated with the impaired control of the medio-lateral (ML) position of the centre of feet pressure (CoP), and several manoeuvres have been proposed for enhancing the CoP symmetry. Here, we assessed in healthy standing subjects the feasibility and outcome of [...] Read more.
Various diseases are associated with the impaired control of the medio-lateral (ML) position of the centre of feet pressure (CoP), and several manoeuvres have been proposed for enhancing the CoP symmetry. Here, we assessed in healthy standing subjects the feasibility and outcome of a novel protocol entailing a reaction to a continuous asymmetric ML displacement (10 cm) of the support base. The periodic perturbation consisted of a fast half-cycle (0.5 Hz) followed by a slow half-cycle (0.18 Hz). One hundred successive horizontal translation cycles were delivered in sequence. Eyes were open or closed. CoP was recorded before, after, and during the stimulation by a dynamometric platform fixed onto the translating platform. We found that the post-stimulation CoP was displaced towards the direction of the fast half-cycles. The displacement lasted several tens of seconds. Vision did not affect the amplitude or duration of the post-stimulation effect. The magnitude of post-stimulation CoP displacement was related to the perturbation-induced ML motion of CoP recorded during the stimulation. Over the successive perturbation cycles, the time-course of this motion revealed an adaptation phenomenon. Vision moderately reduced the adaptation rate. The findings support the feasibility of the administration of a simple asymmetric balance perturbation protocol in clinical settings to help patients recover the symmetry of the CoP. This protocol needs to be further validated in older populations and in patients. Full article
(This article belongs to the Special Issue Assistive Technology: Biomechanics in Rehabilitation Engineering)
Show Figures

Figure 1

Back to TopTop