Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = quasi-planetary cutter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4712 KB  
Article
Simulation and Experimental Study on the Shrub-Cutting Performance of Quasi-Planetary Cutter
by Zikai Song, Xibin Dong, Chi Teng, Ben Guo, Jiawang Zhang and Yuchen Zhang
Appl. Sci. 2025, 15(12), 6937; https://doi.org/10.3390/app15126937 - 19 Jun 2025
Viewed by 489
Abstract
To evaluate the performance of quasi-planetary cutting tools, three shrubs were selected and studied using a combination of numerical simulation and cutting test bench experiments. Based on the constitutive model of shrub material and LS-DYNA simulation, the effects of tool speed (n [...] Read more.
To evaluate the performance of quasi-planetary cutting tools, three shrubs were selected and studied using a combination of numerical simulation and cutting test bench experiments. Based on the constitutive model of shrub material and LS-DYNA simulation, the effects of tool speed (n), feed speed (v), and shrub diameter (Da) on peak cutting force (Fmax) and peak cutting power (Pmax) were analysed through a single-factor simulation test. Using the shrub-cutting test bench, an orthogonal test was designed with n, v, and moisture content (w) as factors and Fmax and Pmax as indicators. A regression model was established, and a single-factor comparison test for w was conducted. The results indicate that Fmax decreases as n increases, while Pmax initially decreases and then increases. Both Fmax and Pmax increase with rising v and Da. As w increases, Fmax and Pmax first decrease and then increase. When n is 1813 r/min, v is 30 mm/s, and w is 10.9%, Fmax and Pmax reach their optimal values of 8.42 N and 282.99 W, respectively, with verification test errors of 2.68% and 1.56%. The findings provide methodological and data support for studying the cutting performance of new cutting tools. Full article
Show Figures

Figure 1

Back to TopTop