Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = quarter-wavelength SIR

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 23937 KiB  
Article
A Dual-Band Patch Antenna with Combined Self-Decoupling and Filtering Properties and Its Application in Dual/Squad-Band Two-Element MIMO Array
by Jun-Yi Lv, Jun-Ming Zhang, Peng-Fei Lv and Li-Xin Xu
Sensors 2024, 24(21), 6833; https://doi.org/10.3390/s24216833 - 24 Oct 2024
Viewed by 1702
Abstract
This paper proposes a dual-band patch antenna with combined self-decoupling and filtering properties, designed to suppress mutual coupling between two antenna elements both within the same dual-band and across different dual-bands. Initially, a dual-band aperture-coupled filtering patch antenna is designed, featuring a forked [...] Read more.
This paper proposes a dual-band patch antenna with combined self-decoupling and filtering properties, designed to suppress mutual coupling between two antenna elements both within the same dual-band and across different dual-bands. Initially, a dual-band aperture-coupled filtering patch antenna is designed, featuring a forked short-circuited SIR feedline with a quarter-wavelength open-ended stub and a U-shaped patch with two U-slots, which generate three controllable radiation nulls while introducing two additional resonant modes. The design steps are also provided in detail. Subsequently, the low mutual coupling phenomenon of two vertically placed aperture-coupled patch antennas is investigated, successfully developing a high-isolated dual-band two-element MIMO array I. Furthermore, the other quad-band two-element MIMO array II is designed, which utilizes the filtering response to significantly reduce mutual coupling across four bands. Finally, a dual-band filtering patch antenna element and two two-element MIMO arrays are fabricated and measured. The measurements and simulations validate the antenna’s low mutual coupling performance in multi-band MIMO arrays and demonstrate its strong potential for future wireless communication applications. Full article
(This article belongs to the Special Issue Antenna Design and Array Signal Processing)
Show Figures

Figure 1

11 pages, 3606 KiB  
Article
A New Compact Wideband Filter Based on a Coupled Stepped Impedance Resonator
by Abdel-Fattah A. Sheta and Ibrahim Elshafiey
Micromachines 2024, 15(2), 221; https://doi.org/10.3390/mi15020221 - 31 Jan 2024
Cited by 4 | Viewed by 1742
Abstract
A new compact wideband filter is introduced to address the requirements of recent communication and radar systems. The filter is based on a quarter-wavelength short-circuit coupled stepped impedance resonator (SIR). The analytical solution shows that the suggested SIR resonator provides a compact size [...] Read more.
A new compact wideband filter is introduced to address the requirements of recent communication and radar systems. The filter is based on a quarter-wavelength short-circuit coupled stepped impedance resonator (SIR). The analytical solution shows that the suggested SIR resonator provides a compact size and a wide stopband response, which are essential features in many wireless communication systems. The analytical results also reveal that increasing the impedance ratio of the SIR extends the stopband by increasing the first spurious response and reducing its total length. A compact two-coupled short-circuit SIR filter is designed at 1.23 GHz. The design approach is validated using an ideal transmission line modeling analysis and electromagnetic simulation using CST Microwave Studio 2021. The proposed structure is shown to be flexible, allowing the achievement of a relative bandwidth as low as 5% and as high as 50%. A four-resonator filter is designed by cascading two stages of the designed two-coupled short-circuit SIR filter, which are coupled through a quarter-wavelength line. The simulation results illustrate that the suggested structure can be used to design a filter with any number of resonators. The filter is implemented using a high-resolution LPKF laser machine on Rogers RT/duroid 6010.2LM material with a thickness of 0.635 mm. From the measurements, the bandwidth is found to be 390 MHz and centered at 1325 MHz (29.4% relative bandwidth) and the insertion loss is 1.3 dB. The simulation and experimental results verify the proposed approach and indicate the potential of this component in meeting the design requirements of next-generation microwave circuits related to flexibility and size-compactness. Full article
(This article belongs to the Special Issue New Advances in Micromachined Resonators)
Show Figures

Figure 1

10 pages, 3989 KiB  
Communication
Miniaturized Bandpass Filter Using a Combination of T–Shaped Folded SIR Short Loaded Stubs
by Kicheol Yoon, Kwang Gi Kim and Tae-Hyeon Lee
Sensors 2022, 22(7), 2708; https://doi.org/10.3390/s22072708 - 1 Apr 2022
Cited by 2 | Viewed by 2667
Abstract
The consumption of multimedia content is ubiquitous in modern society. This is made possible by wireless local area networks (W–LAN) or wire service systems. Bandpass filters (BPF) have become very popular as they solve certain data transmission limitations allowing users to obtain reliable [...] Read more.
The consumption of multimedia content is ubiquitous in modern society. This is made possible by wireless local area networks (W–LAN) or wire service systems. Bandpass filters (BPF) have become very popular as they solve certain data transmission limitations allowing users to obtain reliable access to their multimedia content. The BPFs with quarter–wavelength short stubs can achieve performance; however, these BPFs are bulky. In this article, we propose a compact BPF with a T–shaped stepped impedance resonator (SIR) transmission line and a folded SIR structure. The proposed BPF uses a T–shaped SIR connected to a J–inverter structure (transmission line); this T–shaped SIR structure is used to replace the λg/4 transmission line seen in conventional stub BPFs. In addition, a folded SIR is added to the short stubs seen in conventional stub BPFs. This approach allows us to significantly reduce the size of the BPF. The advantage of a BPF is its very small size, low insertion loss, and wide bandwidth. The overall size of the new BPF is 2.44 mm × 1.49 mm (0.068λg × 0.059λg). The proposed BPF can be mass produced using semiconductors due to its planar structure. This design has the potential to be widely used in various areas including military, medical, and industrial systems. Full article
(This article belongs to the Special Issue Antenna and Microwave Sensors)
Show Figures

Figure 1

10 pages, 2190 KiB  
Article
A Miniaturized Wideband Bandpass Filter Using Quarter-Wavelength Stepped-Impedance Resonators
by Liqin Liu, Ping Zhang, Min-Hang Weng, Chin-Yi Tsai and Ru-Yuan Yang
Electronics 2019, 8(12), 1540; https://doi.org/10.3390/electronics8121540 - 13 Dec 2019
Cited by 17 | Viewed by 3901
Abstract
In this paper, we present a simple method to design a miniaturized wideband bandpass filter with suppression of the third harmonic, using only two quarter-wavelength stepped-impedance resonators (SIRs). The resonant modes of the quarter-wavelength SIR, depending on the impedance ratio (K) and electrical [...] Read more.
In this paper, we present a simple method to design a miniaturized wideband bandpass filter with suppression of the third harmonic, using only two quarter-wavelength stepped-impedance resonators (SIRs). The resonant modes of the quarter-wavelength SIR, depending on the impedance ratio (K) and electrical length ratio (α), are discussed first. As to setting the resonant frequency of the SIR for the lower band edge of the required band, the size parameters of two quarter-wavelength SIRs can be determined by selecting the desired impedance ratio (K) and length ratio (α). By using the opposite directional arrangement of two SIRs with direct taped input/output ports, the wideband response can be formed. A filter example is shown in this study to address this simple design procedure. The measured results of the fabricated filter have a wide passband response from 3.3 to 5.8 GHz, with an insertion loss of 1.5 dB, a return loss of 20 dB, an extended bandwidth ration of 55%, a low-average group delay of less than 0.75 ns, and a stopband from 6 to 12 GHz, with an attenuation level of 20 dB. Due to the similar 0° feeding, a transmission zero at 8.3 GHz appears near the band edge; thus, improving the band selectivity. The proposed filter can have a very simple structure and a miniature size. Simulated results and measured results are in good agreement. Full article
(This article belongs to the Special Issue Filter Design Solutions for RF systems)
Show Figures

Figure 1

Back to TopTop