Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = quantum ghost imaging (QGI)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 5916 KiB  
Article
Classical Ghost Imaging with Unknowing Pseudo-Thermal Light
by Junyan Hu, Yan Guo, Binglin Chen, Yikang He, Peiming Li and Baoqing Sun
Photonics 2025, 12(5), 441; https://doi.org/10.3390/photonics12050441 - 2 May 2025
Viewed by 411
Abstract
Classical ghost imaging (CGI), an extension of quantum ghost imaging (QGI), enables object reconstruction by leveraging the spatial correlation between a pair of beams. Traditionally, CGI requires a camera or point scan to capture the spatial information of the illumination source with intensity [...] Read more.
Classical ghost imaging (CGI), an extension of quantum ghost imaging (QGI), enables object reconstruction by leveraging the spatial correlation between a pair of beams. Traditionally, CGI requires a camera or point scan to capture the spatial information of the illumination source with intensity fluctuations. In this work, we propose a novel CGI scheme that utilizes an incoherent source to illuminate both the object and the modulations, without introducing any mutual interference between them. Through theoretical analysis and experimental validation, we demonstrate that the reconstruction process relies solely on the modulations and correlation signals of two single-pixel detectors. Concurrently, this scheme is also extended to ghost diffraction, verifying the correlation between two planes that are Fourier transform pairs of the speckle field. Moreover, our study reveals the intricate relationships between the speckle field, modulations, and object, and experimentally verifies the impact of speckle fields on image quality. Notably, this work provides a more comparable framework between CGI and QGI, offering a promising avenue to explore the classical–quantum relationship. Full article
(This article belongs to the Special Issue Advancements in Computational Imaging and Optical Computing)
Show Figures

Figure 1

11 pages, 2807 KiB  
Technical Note
A Method to Correct the Temporal Drift of Single-Photon Detectors Based on Asynchronous Quantum Ghost Imaging
by Carsten Pitsch, Dominik Walter, Leonardo Gasparini, Helge Bürsing and Marc Eichhorn
Sensors 2024, 24(8), 2578; https://doi.org/10.3390/s24082578 - 18 Apr 2024
Cited by 1 | Viewed by 1410
Abstract
Single-photon detection and timing has attracted increasing interest in recent years due to their necessity in the field of quantum sensing and the advantages of single-quanta detection in the field of low-level light imaging. While simple bucket detectors are mature enough for commercial [...] Read more.
Single-photon detection and timing has attracted increasing interest in recent years due to their necessity in the field of quantum sensing and the advantages of single-quanta detection in the field of low-level light imaging. While simple bucket detectors are mature enough for commercial applications, more complex imaging detectors are still a field of research comprising mostly prototype-level detectors. A major problem in these detectors is the implementation of in-pixel timing circuitry, especially for two-dimensional imagers. One of the most promising approaches is the use of voltage-controlled ring resonators in every pixel. Each of these runs independently based on a voltage supplied by a global reference. However, this yields the problem that the supply voltage can change across the chip which, in turn, changes the period of the ring resonator. Due to additional parasitic effects, this problem can worsen with increasing measurement time, leading to drift in the timing information. We present here a method to identify and correct such temporal drifts in single-photon detectors based on asynchronous quantum ghost imaging. We also show the effect of this correction on recent quantum ghost imaging (QGI) measurement from our group. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

Back to TopTop