Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = quantisation interval

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 5431 KB  
Article
Analysis of Results of Digital Electroencephalography and Digital Vectors of Coronavirus Images upon Applying the Theory of Covariance Functions
by Jonas Skeivalas, Eimuntas Paršeliūnas, Audrius Paršeliūnas and Dominykas Šlikas
Symmetry 2023, 15(7), 1330; https://doi.org/10.3390/sym15071330 - 29 Jun 2023
Viewed by 1339
Abstract
This paper analyses the structures of covariance functions of digital electroencephalography measurement vectors and digital vectors of two coronavirus images. For this research, we used the measurement results of 30-channel electroencephalography (E1–E30) and digital vectors of images of two SARS-CoV-2 variants (cor2 and [...] Read more.
This paper analyses the structures of covariance functions of digital electroencephalography measurement vectors and digital vectors of two coronavirus images. For this research, we used the measurement results of 30-channel electroencephalography (E1–E30) and digital vectors of images of two SARS-CoV-2 variants (cor2 and cor4), where the magnitudes of intensity of the electroencephalography parameters and the parameters of the digital images of coronaviruses were encoded. The estimators of cross-covariance functions of the digital electroencephalography measurements’ vectors and the digital vectors of the coronavirus images and the estimators of auto-covariance functions of separate vectors were derived by applying random functions constructed according to the vectors’ parameter measurement data files. The estimators of covariance functions were derived by changing the values of the quantised interval k on the time and image pixel scales. The symmetric matrices of correlation coefficients were calculated to estimate the level of dependencies between the electroencephalography measurement results’ vectors and the digital vectors of the coronavirus images. The graphical images of the normalised cross-covariance functions for the electroencephalography measurement results’ vectors and the digital vectors of the coronavirus images within the period of all measurements are asymmetric. For all calculations, a computer program was developed by applying a package of Matlab procedures. A probabilistic interdependence between the results of the electroencephalography measurements and the parameters of the coronavirus vectors, as well as their variation on the time and image pixel scales, was established. Full article
Show Figures

Figure 1

16 pages, 5280 KB  
Article
Covariate Model of Pixel Vector Intensities of Invasive H. sosnowskyi Plants
by Ignas Daugela, Jurate Suziedelyte Visockiene, Egle Tumeliene, Jonas Skeivalas and Maris Kalinka
J. Imaging 2021, 7(3), 45; https://doi.org/10.3390/jimaging7030045 - 3 Mar 2021
Viewed by 2318
Abstract
This article describes an agricultural application of remote sensing methods. The idea is to aid in eradicating an invasive plant called Sosnowskyi borscht (H. sosnowskyi). These plants contain strong allergens and can induce burning skin pain, and may displace native plant [...] Read more.
This article describes an agricultural application of remote sensing methods. The idea is to aid in eradicating an invasive plant called Sosnowskyi borscht (H. sosnowskyi). These plants contain strong allergens and can induce burning skin pain, and may displace native plant species by overshadowing them, meaning that even solitary individuals must be controlled or destroyed in order to prevent damage to unused rural land and other neighbouring land of various types (mostly violated forest or housing areas). We describe several methods for detecting H. sosnowskyi plants from Sentinel-2A images, and verify our results. The workflow is based on recently improved technologies, which are used to pinpoint exact locations (small areas) of plants, allowing them to be found more efficiently than by visual inspection on foot or by car. The results are in the form of images that can be classified by several methods, and estimates of the cross-covariance or single-vector auto-covariance functions of the contaminant parameters are calculated from random functions composed of plant pixel vector data arrays. The correlation of the pixel vectors for H. sosnowskyi images depends on the density of the chlorophyll content in the plants. Estimates of the covariance functions were computed by varying the quantisation interval on a certain time scale and using a computer programme based on MATLAB. The correlation between the pixels of the H. sosnowskyi plants and other plants was found, possibly because their structures have sufficiently unique spectral signatures (pixel values) in raster images. H. sosnowskyi can be identified and confirmed using a combination of two classification methods (using supervised and unsupervised approaches). The reliability of this combined method was verified by applying the theory of covariance function, and the results showed that H. sosnowskyi plants had a higher correlation coefficient. This can be used to improve the results in order to get rid of plants in particular areas. Further experiments will be carried out to confirm these results based on in situ fieldwork, and to calculate the efficiency of our method. Full article
Show Figures

Figure 1

Back to TopTop