Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = quadrotor swarm motion planning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2075 KiB  
Article
Extending Conflict-Based Search for Optimal and Efficient Quadrotor Swarm Motion Planning
by Zihao Wang, Zhiwei Zhang, Wenying Dou, Guangpeng Hu, Lifu Zhang and Meng Zhang
Drones 2024, 8(12), 719; https://doi.org/10.3390/drones8120719 - 29 Nov 2024
Cited by 1 | Viewed by 864
Abstract
Multi-agent pathfinding has been extensively studied by the robotics and artificial intelligence communities. The classical algorithm, conflict-based search (CBS), is widely used in various real-world applications due to its ability to solve large-scale conflict-free paths. However, classical CBS assumes discrete time–space planning and [...] Read more.
Multi-agent pathfinding has been extensively studied by the robotics and artificial intelligence communities. The classical algorithm, conflict-based search (CBS), is widely used in various real-world applications due to its ability to solve large-scale conflict-free paths. However, classical CBS assumes discrete time–space planning and overlooks physical constraints in actual scenarios, making it unsuitable for direct application in unmanned aerial vehicle (UAV) swarm. Inspired by the decentralized planning and centralized conflict resolution ideas of CBS, we propose, for the first time, an optimal and efficient UAV swarm motion planner that integrates state lattice with CBS without any underlying assumption, named SL-CBS. SL-CBS is a two-layer search algorithm: (1) The low-level search utilizes an improved state lattice. We design emergency stop motion primitives to ensure complete UAV dynamics and handle spatio-temporal constraints from high-level conflicts. (2) The high-level algorithm defines comprehensive conflict types and proposes a motion primitive conflict detection method with linear time complexity based on Sturm’s theory. Additionally, our modified independence detection (ID) technique is applied to enable parallel conflict processing. We validate the planning capabilities of SL-CBS in classical scenarios and compare these with the latest state-of-the-art (SOTA) algorithms, showing great improvements in success rate, computation time, and flight time. Finally, we conduct large-scale tests to analyze the performance boundaries of SL-CBS+ID. Full article
(This article belongs to the Section Drone Design and Development)
Show Figures

Figure 1

28 pages, 1825 KiB  
Article
Adaptive Robust Motion Control of Quadrotor Systems Using Artificial Neural Networks and Particle Swarm Optimization
by Hugo Yañez-Badillo, Francisco Beltran-Carbajal, Ruben Tapia-Olvera, Antonio Favela-Contreras, Carlos Sotelo and David Sotelo
Mathematics 2021, 9(19), 2367; https://doi.org/10.3390/math9192367 - 24 Sep 2021
Cited by 23 | Viewed by 3079
Abstract
Most of the mechanical dynamic systems are subjected to parametric uncertainty, unmodeled dynamics, and undesired external vibrating disturbances while are motion controlled. In this regard, new adaptive and robust, advanced control theories have been developed to efficiently regulate the motion trajectories of these [...] Read more.
Most of the mechanical dynamic systems are subjected to parametric uncertainty, unmodeled dynamics, and undesired external vibrating disturbances while are motion controlled. In this regard, new adaptive and robust, advanced control theories have been developed to efficiently regulate the motion trajectories of these dynamic systems while dealing with several kinds of variable disturbances. In this work, a novel adaptive robust neural control design approach for efficient motion trajectory tracking control tasks for a considerably disturbed non-linear under-actuated quadrotor system is introduced. Self-adaptive disturbance signal modeling based on Taylor-series expansions to handle dynamic uncertainty is adopted. Dynamic compensators of planned motion tracking errors are then used for designing a baseline controller with adaptive capabilities provided by three layers B-spline artificial neural networks (Bs-ANN). In the presented adaptive robust control scheme, measurements of position signals are only required. Moreover, real-time accurate estimation of time-varying disturbances and time derivatives of error signals are unnecessary. Integral reconstructors of velocity error signals are properly integrated in the output error signal feedback control scheme. In addition, the appropriate combination of several mathematical tools, such as particle swarm optimization (PSO), Bézier polynomials, artificial neural networks, and Taylor-series expansions, are advantageously exploited in the proposed control design perspective. In this fashion, the present contribution introduces a new adaptive desired motion tracking control solution based on B-spline neural networks, along with dynamic tracking error compensators for quadrotor non-linear systems. Several numeric experiments were performed to assess and highlight the effectiveness of the adaptive robust motion tracking control for a quadrotor unmanned aerial vehicle while subjected to undesired vibrating disturbances. Experiments include important scenarios that commonly face the quadrotors as path and trajectory tracking, take-off and landing, variations of the quadrotor nominal mass and basic navigation. Obtained results evidence a satisfactory quadrotor motion control while acceptable attenuation levels of vibrating disturbances are exhibited. Full article
Show Figures

Figure 1

Back to TopTop