Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = pyridine-2-aldoxime ligand

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1214 KiB  
Article
Catalytic Behavior of Cobalt Complexes Bearing Pyridine–Oxime Ligands in Isoprene Polymerization
by Yuanxu Du, Shuo Gao, Hui Ma, Siqi Lu, Zhenhua Zhang and Mengmeng Zhao
Polymers 2023, 15(24), 4660; https://doi.org/10.3390/polym15244660 - 10 Dec 2023
Cited by 2 | Viewed by 1960
Abstract
Several cobalt(II) complexes Co1Co3 bearing pyridine–oxime ligands (L1 = pyridine-2-aldoxime for Co1; L2 = 6-methylpyridine-2-aldoxime for Co2; L3 = phenyl-2-pyridylketoxime for Co3) and picolinaldehyde O-methyl oxime (L4)-supported Co4 were synthesized and well characterized by FT-IR, [...] Read more.
Several cobalt(II) complexes Co1Co3 bearing pyridine–oxime ligands (L1 = pyridine-2-aldoxime for Co1; L2 = 6-methylpyridine-2-aldoxime for Co2; L3 = phenyl-2-pyridylketoxime for Co3) and picolinaldehyde O-methyl oxime (L4)-supported Co4 were synthesized and well characterized by FT-IR, mass spectrum and elemental analysis. The single-crystal X-ray diffraction of complex Co2 reveals that the cobalt center of CoCl2 is coordinated with two 6-methylpyridine-2-aldoxime ligands binding with Npyridine and Noxime atoms, which feature a distorted octahedral structure. These Co complexes Co1Co4 displayed extremely high activity toward isoprene polymerization upon activation with small amount of AlClEt2 in toluene, giving polyisoprene with high activity up to 16.3 × 105 (mol of Co)−1(h)−1. And, the generated polyisoprene displayed high molecular weights and narrow molecular distribution with a cis-1,4-enriched selectivity. The type of cobalt complexes, cocatalyst and reaction temperature all have effects on the polymerization activity but not on the microstructure of polymer. Full article
(This article belongs to the Special Issue Catalytic Olefin Polymerization and Polyolefin Materials)
Show Figures

Graphical abstract

10 pages, 1230 KiB  
Article
Synthesis, Characterization and Catalytic Property Studies for Isoprene Polymerization of Iron Complexes Bearing Unionized Pyridine-Oxime Ligands
by Mengmeng Zhao, Ying Ma, Xianhui Zhang, Liang Wang, Guangqian Zhu and Qinggang Wang
Polymers 2022, 14(17), 3612; https://doi.org/10.3390/polym14173612 - 1 Sep 2022
Cited by 10 | Viewed by 2417
Abstract
Iron complexes of the types [Fe(HL)2Cl2] (Fe1: HL1 = pyridine-2-aldoxime; Fe2: HL2 = 6-methylpyridine-2-aldoxime; Fe3: HL3 = phenyl-2-pyridylketoxime; Fe4: HL4 = picolinaldehyde O-methyl oxime) were prepared and characterized by elemental [...] Read more.
Iron complexes of the types [Fe(HL)2Cl2] (Fe1: HL1 = pyridine-2-aldoxime; Fe2: HL2 = 6-methylpyridine-2-aldoxime; Fe3: HL3 = phenyl-2-pyridylketoxime; Fe4: HL4 = picolinaldehyde O-methyl oxime) were prepared and characterized by elemental analysis and IR spectroscopy. The crystal structure of Fe2, determined by single-crystal X-ray diffraction, featured a distorted octahedral coordination of the iron center binding with two ligands of HL2. The X-ray structure and infrared spectral data indicated that pyridine-oxime ligands act as unionized bidentate ligand by coordinating with Npyridine and Noxime. The catalytic performance for isoprene polymerization, catalyzed by these pyridine-oxime-ligated iron complexes, was examined. For a binary catalytic system combined with MAO, complexes Fe1, Fe3 and Fe4 were found to be highly active (up to 6.5 × 106 g/mol·h) in cis-1,4-alt-3,4 enchained polymerization, with average molecular weights in the range of 60–653 kg/mol and narrow PDI values of 1.7–3.5, even with very low amounts of MAO (Al/Fe = 5). Upon activation with [Ph3C][B(C6F5)4]/AlR3 for the ternary catalytic system, theses complexes showed extremely high activities, as well about 98% yield after 2 min, to afford cis-1,4-alt-3,4-polyisoprene with a molecular weight of 140–420 kg/mol. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

20 pages, 12627 KiB  
Article
Confirming the Molecular Basis of the Solvent Extraction of Cadmium(II) Using 2-Pyridyl Oximes through a Synthetic Inorganic Chemistry Approach and a Proposal for More Efficient Extractants
by Anastasia Routzomani, Zoi G. Lada, Varvara Angelidou, Catherine P. Raptopoulou, Vassilis Psycharis, Konstantis F. Konidaris, Christos T. Chasapis and Spyros P. Perlepes
Molecules 2022, 27(5), 1619; https://doi.org/10.3390/molecules27051619 - 28 Feb 2022
Cited by 6 | Viewed by 3743
Abstract
The present work describes the reactions of CdI2 with 2-pyridyl aldoxime (2paoH), 3-pyridyl aldoxime (3paoH), 4-pyridyl aldoxime (4paoH), 2-6-diacetylpyridine dioxime (dapdoH2) and 2,6-pyridyl diamidoxime (LH4). The primary goal was to contribute to understanding the molecular basis of the [...] Read more.
The present work describes the reactions of CdI2 with 2-pyridyl aldoxime (2paoH), 3-pyridyl aldoxime (3paoH), 4-pyridyl aldoxime (4paoH), 2-6-diacetylpyridine dioxime (dapdoH2) and 2,6-pyridyl diamidoxime (LH4). The primary goal was to contribute to understanding the molecular basis of the very good liquid extraction ability of 2-pyridyl ketoximes with long aliphatic chains towards toxic Cd(II) and the inability of their 4-pyridyl isomers for this extraction. Our systematic investigation provided access to coordination complexes [CdI2(2paoH)2] (1), {[CdI2(3paoH)2]}n (2), {[CdI2(4paoH)2]}n (3) and [CdI2(dapdoH2)] (4). The reaction of CdI2 and LH4 in EtOH resulted in a Cd(II)-involving reaction of the bis(amidoxime) and isolation of [CdI2(L’H2)] (5), where L’H2 is the new ligand 2,6-bis(ethoxy)pyridine diimine. A mechanism of this transformation has been proposed. The structures of 1, 2, 3, 2EtOH and 5 were determined by single-crystal X-ray crystallography. The complexes have been characterized by FT-IR and FT-Raman spectra in the solid state and the data are discussed in terms of structural features. The stability of the complexes in DMSO was investigated by 1H NMR spectroscopy. Our studies confirm that the excellent extraction ability of 2-pyridyl ketoximes is due to the chelating nature of the extractants leading to thermodynamically stable Cd(II) complexes. The monodentate coordination of 4-pyridyl ketoximes (as confirmed in our model complexes with 4paoH and 3paoH) seems to be responsible for their poor performance as extractants. Full article
(This article belongs to the Special Issue Metal Intoxication: General Aspects and Chelating Agents)
Show Figures

Graphical abstract

Back to TopTop