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Abstract: Several cobalt(II) complexes Co1–Co3 bearing pyridine–oxime ligands (L1 = pyridine-2-
aldoxime for Co1; L2 = 6-methylpyridine-2-aldoxime for Co2; L3 = phenyl-2-pyridylketoxime for Co3)
and picolinaldehyde O-methyl oxime (L4)-supported Co4 were synthesized and well characterized
by FT-IR, mass spectrum and elemental analysis. The single-crystal X-ray diffraction of complex
Co2 reveals that the cobalt center of CoCl2 is coordinated with two 6-methylpyridine-2-aldoxime
ligands binding with Npyridine and Noxime atoms, which feature a distorted octahedral structure.
These Co complexes Co1–Co4 displayed extremely high activity toward isoprene polymerization
upon activation with small amount of AlClEt2 in toluene, giving polyisoprene with high activity up
to 16.3 × 105 (mol of Co)−1(h)−1. And, the generated polyisoprene displayed high molecular weights
and narrow molecular distribution with a cis-1,4-enriched selectivity. The type of cobalt complexes,
cocatalyst and reaction temperature all have effects on the polymerization activity but not on the
microstructure of polymer.

Keywords: cobalt(II) catalyst; pyridine-2-aldoxime ligand; isoprene polymerization; low cocatalyst
consumption; high catalytic activity

1. Introduction

The development of novel catalysts for diene polymerization with high activity and
selectivity has attracted considerable attention in the past decades for improved synthetic
rubber [1,2]. Isoprene is one of the most popular monomers, playing an increasingly
important role in the synthetic rubber industry ever since being isolated from natural
rubber by Williams in 1860. The stereospecific polymerization of isoprene allows the
following stereoregular polymers to be given, including cis-1,4-, trans-1,4-, 3,4-, 1,2-unit,
which exhibit different mechanical properties and application direction due to the otherness
of chain parameters. For example, cis-1,4- polyisoprene has a microstructure similar to
natural rubber and can be used as an alternative to natural rubber. The 3,4- polyisoprene
is generally applied in the tire industry to improve the wet skid resistance of tread stock.
Hence, developing well-performed cis-1,4-alt-3,4- polyisoprene materials with various
component contents and sequence structure is one of the main goals of rubber industry [3,4].

Transition metal (Sc, Nd, Ti, V, Cr, Fe, Co, Ni, Pd, etc.)-catalyzed diene polymer-
ization is a successful technique invention, and has achieved a significant breakthrough
for the field of synthetic rubber with good performances [5–8]. Ever since the Ziegler–
Natta catalysts were invented, the research has mainly focused on simple metal salts
(Ti [9], Nd [10], and Co [11] with halide, acetonate, etc.) in combination with alkyl alu-
minum. To improve the activity of the transition metal catalyst, a variety of ligands
containing pyridine, imine, phosphine and phenolate moieties have been applied to mod-
ify the electronic and steric environment at the metal’s center. And, it has been proven
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that the ancillary ligand plays an important role in the catalytic process and polymer
properties [12–18]. Therefore, much research has been focused on cobalt catalyst, which is
known as the most versatile catalyst among the various transition metals, and has character-
istics of low cost, high stability and easy preparation. And, these cobalt catalysts show good
catalytic effects in regulating polyolefin microstructure, molecular weight and molecular
weight distribution. At first, several cobalt salts (e.g., CoCl2 and Co(acac)2) combined with
suitable alkylating agents were used to catalyze diene polymerization with disappointing
catalytic effects [6,19–21]. Subsequently, efforts to develop well-defined cobalt complexes to
catalyze the polymerization of conjugated dienes were made. Many kinds of monodentate,
bidentate, tridentate and tetradentate ligands with phosphine, nitrogen, oxygen, and sulfur
atoms were applied for the synthesis of cobalt catalysts [8,22]. For example, researchers
started using phosphorus ligands to synthesize cobalt complexes, which demonstrated
the desired management of microstructure and molecular weight in the polymerization of
butadiene, isoprene and 1,3-hexadienes in combination with an Al cocatalyst [3,23–28]. By
skillfully altering the ligand structure and ligating atom, the cobalt catalysts were able to
exhibit high activity, and a wide variety of polymers with different properties and structures
were available. Further work on polymerization of diene catalyzed by cobalt complexes
with tridentate ligands or tetradentate ligand containing a N atom and other O, P or S het-
eroatoms (N-N-N [29–39], N-N-O [40–43], N-N-S [44], N-N-P [45–47] and N-N-O-O [48], etc.)
have been reported. For instance, Gong and his coworkers synthesized a novel type of
hemilabile donor ligated cobalt dichloride complexes (N,N,P/O/S), and the nature of the
hemilabile donor (P, O and S) determines the coordination chemistry of the complexes,
which demonstrated the high activity and enriched cis-1,4- selectivity of polyisoprene.
The kinetic studies reveal that the catalyst systems follow a typical living mechanism [46].
Meanwhile, N,N-containing bidentate ligands, such as iminopyridine and α-diimine, have
also been tested for cobalt-catalyzed polymerization, and attracted extensive investiga-
tions in the past few years [49–58]. For example, Sun and coworkers reported a series of
(8-(arylimino)-5,6,7-trihydroquinolin-2-yl)methyl acetate (N,N) ligated cobalt complexes
and applied them in isoprene polymerization. This catalyst system demonstrated a high
activity of 1.37 × 105 (mol of Co)−1(h)−1 to give polyisoprene with high molecular weight
and the cis-1,4 configuration nearly to 70%.

Due to our ongoing burning desire to develop polymerization catalysts with high per-
formance, we are interested in transition metal catalysts coordinating with N,N-bidentate
ligands for diene polymerization [58–64]. In a recent piece of work, we reported that
the pyridine–oxime ligand exhibited high performance in iron catalyzed isoprene poly-
merization with very low amount of methylaluminoxane [65]. Confirming the funda-
mental role played by the nature of the pyridine–oxime ligand and the type of cobalt
catalyst in determining the catalytic activity and selectivity [66,67], herein we describe a
series of pyridine–oxime ligated cobalt catalysts and study their catalytic properties for
isoprene polymerization.

2. Materials and Methods
2.1. General Considerations

All experiments were carried out under argon atmosphere by using standard Schlenk
techniques or in glovebox. CoCl2 (Macklin Biochemical Co., Ltd., Shanghai, China) and
diethylaluminum chloride (AlEt2Cl, 2.0 M solution in hexane, Macklin Biochemical Co., Ltd.,
Shanghai, China) were purchased and used without further purification. Toluene (Sinopharm
Chemical Reagent, Shanghai, China) was refluxed over sodium and distilled and stored
over molecular sieves under nitrogen. Hexane and dichloromethane (Sinopharm Chemical
Reagent, Shanghai, China) were refluxed over calcium hydride and distilled and stored over
molecular sieves in glove box. Isoprene, picolinaldehyde, MeOH, Na2CO3 and Na2SO4
(Sinopharm Chemical Reagent, Shanghai, China) was purchased and freshly distilled over
calcium hydride under nitrogen atmosphere.
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2.2. Co(II) Complexes Preparation

Ligands L1 and L3 were purchased and used directly without treatment. The ligands
L2 and L4 were synthesized and characterized according to the previous report [65]. A
typical procedure for the synthesis of ligand was carried out as follows. To a suspension of
picolinaldehyde (1.0 equiv.) in MeOH, the corresponding amine (1.0 equiv.) was added,
and followed by Na2CO3 (0.5 equiv.). The mixture was stirred at room temperature for
4 h. Then, the suspension was filtered and the solution was transferred to a separatory
funnel, washed with water (3 × 20 mL) and dried over anhydrous Na2SO4. The solvent
was removed in the rotary evaporator and the product was dried under vacuum to give
ligand. All the 1H NMR and 13C NMR of ligands were collected on a Bruker Avance III
400 MHz instrument (Bruker, Karlsruhe, Germany) at 298K, using tetramethyl silane (TMS;
CIL, Andover, MA, USA) as internal standard.

L2: yellow solid, 2.1 g, 90% yield; 1H NMR (400 MHz, CDCl3, 298 K) δ 8.27–8.24 (m, 2H),
7.63–7.54 (m, 2H), 7.14 (m, 1H), 2.58 (s, 3H); 13C NMR (100 MHz, CDCl3, 298 K) δ 158.5, 151.0,
150.9, 136.7, 123.8, 118.2, 24.3.

L4: light yellow oil, 3.1 g, 89% yield; 1H NMR (400 MHz, CDCl3, 298 K) δ

8.61–8.59 (m, 1H), 8.15 (s, 1H), 7.77 (dt, J = 8.0, 1.2 Hz, 1H), 7.68 (dt, J = 7.7, 1.8 Hz, 1H),
7.24 (m, 1H), 4.02 (s, 3H). 13C NMR (100 MHz, CDCl3, 298 K) δ 151.5, 149.5, 149.0, 136.2,
123.9, 121.0, 62.4.

All the cobalt complexes Co1–Co4 were synthesized using the following methods.
Into a 25 mL flask, CoCl2 (1 equiv.) and 8 mL CH2Cl2 in glove box were added, and the
ligand in 2 mL CH2Cl2 was added dropwise. The resultant mixture was stirred at room
temperature overnight. The solvent was removed under vacuum to 5 mL and the complex
was precipitated by addition of hexane (3 mL). The precipitation was collected by filtration
and washed three times with hexane (3 × 5 mL) and dried under vacuum to produce Co(II)
complex. Mass spectra for cobalt complexes were detected using ACQUITYTM UPLC & Q-
TOF MS Premier (Waters, Milford, MA, USA) at Shanghai Jiao Tong University (Shanghai,
China). Elemental analysis was recorded using Vario EL III elemental analyzer (Elementar
Corporation, Hanau, Germany) at Shanghai Institute of Organic Chemistry (Shanghai,
China). X-ray diffraction data was obtained on Smart 1000 diffractometer with Mo K-
alpha X-ray source (λ = 0.71073 Å) at 298 K (Bruker, Karlsruhe, Germany) at Liaocheng
university (Shandong, China). Attenuated total reflection–infrared (ATR-IR) spectroscopy
was conducted using Thermo Scientific Nicolet iN10 (Thermo Fisher Scientific, Waltham
Mass, America) at Shanghai Jiao Tong University (Shanghai, China).

Co1: CoCl2 (1 equiv.) and ligand L1 (2 equiv.) were conducted to give jade-green solid.
A total of 359 mg, 83% yield. ATR-IR (cm−1): 3064, 1640, 1602, 1478, 1450, 1303, 1254, 1037,
1014, 949, 886, 774. TOF-MS-ES+ (m/z): calcd. For [C12H12ClCoN4O2·H2O·3CH3CN]+:
481.0853, found: 480.9859. Anal.: calcd. For C12H12Cl2CoN4O2: C, 38.53; H, 3.23; N, 14.98;
found: C, 38.34; H, 3.23; N, 14.81.

Co2: CoCl2 (1 equiv.) and ligand L2 (2 equiv.) were conducted to give orange solid. A
total of 421 mg, 87% yield. ATR-IR (cm−1): 3055, 1649, 1601, 1493, 1458, 1317, 1255, 1046,
1005, 953, 802, 695. TOF-MS-ES+ (m/z): calcd. For [C14H16ClCoN4O2·3MeOH·3CH3CN]+:
555.1585, found: 555.0580. Anal.: calcd. For C14H16Cl2CoN4O2: C, 41.81; H, 4.01; N, 13.93;
found: C, 41.96; H, 4.02; N, 13.92.

Co3: CoCl2 (1 equiv.) and ligand L3 (2 equiv.) were conducted to give green solid. A to-
tal of 272 mg, 86% yield. ATR-IR (cm−1): 3064, 1640, 1602, 1478, 1450, 1303, 1254, 1037, 1014,
949, 886, 774, 717. TOF-MS-ES+ (m/z): calcd. for [C12H10ClCoN2O·2MeOH·2CH3CN]+:
438.0863, found: 438.0762. Anal.: calcd. For C24H20Cl2CoN4O2: C, 54.77; H, 3.83; N, 10.65;
found: C, 54.21; H, 4.02; N, 10.39.

Co4: CoCl2 (1 equiv.) and ligand L4 (2 equiv.) were conducted to give purple solid.
A total of 257 mg, 83% yield. ATR-IR (cm−1): 1655, 1569, 1522, 1356, 1274, 1023, 930,
771. TOF-MS-ES+ (m/z): calcd. for [C7H8ClCoN2O·2MeOH·CH3CN]+: 335.0441, found:
335.0557. Anal.: calcd. For C14H16Cl2CoN4O2: C, 41.81; H, 4.01; N, 13.93; found: C, 41.75;
H, 4.00; N, 13.79.
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2.3. Procedure for Isoprene Polymerization

The isoprene polymerization was carried out in a 25 mL Schlenk reactor by using
toluene as solvent. In a universal method, the reactor was pumped and inflated three
times. The cobalt complex was weighed in glove box and then added into a Schlenk reactor.
The required amount of solvent, isoprene and cocatalyst was sequentially added into the
Schlenk reactor under argon atmosphere outside of the glove box. At the specified time,
the polymerization was quenched with HCl solution in methanol (methanol/HCl = 50/1).
Polymer was recovered in methanol with an antioxidant 2,6-di–tert–butyl–4-methylphenol
(BHT, 0.5 wt.%). The polymer was collected by filtration and washed with ethanol for
several times and dried under vacuum at 50 ◦C until no change was observed in weight.
The polymer yields were determined by gravimetry.

2.4. Polymer Characterizations

The polymer structure was analyzed by NMR spectra conducting on a Bruker Advance
400 spectrometer at 298 K. 1H NMR (400 Hz, CDCl3) and 13C NMR spectra (100 Hz,
CDCl3) of polyisoprene were recorded by using trimethylsilane as internal reference. The
polyisoprene microstructure of the 1,4 and 3,4 ratio was determined from 1H NMR of
the 1,4 =CH signals at 5.15 ppm and the 3,4 =CH2 signal at 4.7 ppm. The trans/cis-1,4
stereoisomer ratio was distinguished from 13C NMR of the –CH3 signals at 23.8 ppm (for
cis-1,4) and at 16.3 ppm (for trans-1,4). The molecular weights (Mn) and molecular weight
distributions (Mw/Mn) of polymers were measured using gel permeation chromatography
(GPC) using a PL-GPC 50 chromatography and maintained at 25 ◦C by using THF as eluent
and polystyrene as standard.

3. Results and Discussions
3.1. Synthesis and Characterization of Co(II) Complexes

The Co(II) complexes were synthesized by the prepared ligands coordinating with
cobalt chloride in anhydrous CH2Cl2 under argon atmosphere to provide the targeted
complexes Co1–Co4 with high yields. All the cobalt complexes performed well in charac-
terization analysis, including ATR-IR, high resolution mass spectroscopies and elemental
analysis (Scheme 1). Single crystals of complex Co2 were obtained by diffusing hexane into
its saturated dichloromethane solution at −30 ◦C in glovebox, and have been deposited
in CCDC with codes number of 2160527. As seen in the structure shown in Figure 1 and
Tables S1–S3, the Co2 complex adopted a distorted octahedron coordination geometry
surrounded by two L2 ligands and one CoCl2 molecule, wherein two Npyridine atoms (N1
and N3) and two chloride atoms formed the basal equatorial plane and the angle of the
axis N2-Co-N4 is 172.1◦. Moreover, the Noxime atoms of each ligand have a stronger coordi-
nation than Npyridine at the cobalt center according to the bond lengths [Co–N1 = 2.188(17),
Co–N2 = 2.098(16), Co–N3 = 2.219(16), Co–N4 = 2.132(16)]. Consistent with the previous
work of pyridine–oxime iron complex [65], the oxime proton is unionized.
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3.2. Polymerization of Isoprene Catalyzed by Co(II) Complexes

Initial screening for isoprene polymerization was concentrated on the type of catalyst
to identify whether there were some differences between N-OH group and N-OMe group.
Complexes Co1 and Co4 were used as precatalysts activated by AlEt2Cl in toluene solution
(5 mL) under various temperatures, as summarized in Table 1. The results revealed that
the complex Co1 converted the monomer to polyisoprene with high activity under the
condition of [Co]/[isoprene]/[AlEt2Cl] = 1/2000/500, giving a polymerization yield of 95%
at 25 ◦C within 10 min. The produced polyisoprene has a structure with 69% of cis-1,4 and
31% of 3,4 units and a molecular weight of 1.2 × 105 g/mol with low molecular weight
distribution of 1.6 (entry 1, Table 1). In addition, complex Co4 showed a similar manner
of polymerization with a lower activity, with 6.8 × 105 g (mol of Co)−1(h)−1, than Co1,
with 7.7 × 105 g (mol of Co)−1(h)−1 (entry 2, Table 1). Changing the reaction temperature
did have effects on reactivity and selectivity. At 70 ◦C, the complex Co1 could lead to
a polyisoprene yield higher than 83%, with high thermostability when the reaction was
stopped at 10 min (entry 3, Table 1). But for complex Co4, the reaction activity decreased
from 6.8 × 105 g (mol of Co)−1(h)−1 at 25 ◦C to 4.6 × 105 g (mol of Co)−1(h)−1 at 70 ◦C
(entry 4, Table 1). And, the above results may be connected to the fact that the N-OH moiety
displayed a higher catalytic activity and higher heat stability than the N-OMe group under
the same current conditions. However, when the polymerization reactions were conducted
at −30 ◦C, no polyisoprene could be produced for both complexes Co1 and Co4 (entries 5
and 6, Table 1). In addition, significant composition drift is not observed for the resultant
isoprene for complexes Co1 and Co4 with enriched cis-1,4 motif. And, the cis-1,4 units
content slightly decrease at high temperature.

Table 1. Isoprene polymerization using Co1 and Co4 with different temperature a.

Entry Cat. Temp.
(◦C)

Yield b

(%)
Act. c

(×10−5)
Mn

d

(×10−4)
Mw/Mn

d Microstructure(%) e

trans-1,4 cis-1,4 3,4

1 Co1 25 95 7.7 12.2 1.6 0 69 31
2 Co4 25 83 6.8 10.2 1.7 0 68 32
3 Co1 70 83 6.8 17.8 2.0 0 64 36
4 Co4 70 56 4.6 4.9 2.0 1 66 33
5 Co1 −30 - - - - - - -
6 Co4 −30 - - - - - - -

a General conditions: total volume = 8 mL; [isoprene] = 2.5 mol/L; [Co]/[isoprene]/[AlEt2Cl] = 1/2000/500;
reaction time = 10 min. b Isolated yield. c gPolymer (mol of Co)−1(h)−1. d Determined by gel permeation
chromatography (GPC). e Determined by 1H and 13C NMR.
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Subsequently, complexes Co1 catalyzed isoprene polymerization with various cocata-
lyst feeding amounts and reaction time were summarized, as seen in Table 2.
For complex Co1, changing the amount of [Co]/[AlEt2Cl] from 1/500 to 1/50 (entry 1,
Table 2) did not vary reactivity significantly when the reaction went on for 10 min, and
also gave >99% yield of polyisoprene. And, complete conversion of isoprene could be
achieved even though the [Co]/[AlEt2Cl] is changed to 1/10 (entry 2, Table 2), which is
virtually irrelevant to cocatalyst feeding, suggestive of the conformation stability of active
species. It should be pointed out that this catalytic system showed extremely high activity
(8.16 × 105 g (mol of Co)−1(h)−1), which is comparable with the recent work on rigid Co(II)
chloride catalysts (1.37 × 105 g (mol of Co)−1(h)−1) [68] and α-diimine cobalt catalysts
(0.54 × 105 g (mol of Co)−1(h)−1) [58]. All resultant polyisoprenes are predominantly cis-1,4
enchained with about 30% of 3,4 units. Interestingly, the content of the 3,4-unit polymer
slightly increased from 31% to 36% with the change in [Co]/[AlEt2Cl] ratio from 1/500
to 1/10 (Figure 2 and Figures S11 and S12). The molecular weight of polyisoprene was
found to be dependent on the amount of AlEt2Cl. The molecular weight of polyisoprene
increased gradually with widened molecular weight distribution as the cocatalyst feed-
ing reduced, which could be explained by the occurrence of transfer reaction. In order
to give the best cocatalyst feeding, the polymerization under the [Co]/[AlEt2Cl] = 1/50
and [Co]/[AlEt2Cl] = 1/10 were stopped within 5 min. This proved that a low amount of
AlEt2Cl has higher activity (entry 4, Table 2). These may be related to the dialkylated species
with a significant amount of AlEt2Cl, which makes the Co center difficult to cationize to
coordinate isoprene. Excitingly, even if the [Co]/[AlEt2Cl] ratio was altered to 1/5, the
polymerization could still be carried out, and produced a 38% yield of polymer after 1 h,
suggestive of the high catalytic ability of the pyridine–oxime ligated Co catalyst. It is worth
mentioning that AlEt2Cl dosage is much less than in the previous catalyst systems.

The titled complexes Co2 and Co3 with methyl and phenyl group were individually
tested under the same polymerization conditions for comparison. The isoprene polymer-
ization catalyzed by Co2, which had a methyl group on the 6-position of pyridine ring,
also showed full conversion at the [Co]/[AlEt2Cl] = 1/50 within 10 min (entry 6, Table 2).
However, it needs to be emphasized that the pyridine–oxime ligated iron complex bearing
one 6-methyl substituent at pyridine ring showed lower activity because of steric hindrance
in the previous work [65]. Zhang’s group also reported that the substituent at the 6-position
of the pyridine ring significantly influenced the catalytic performances of the iminopyridine
ligated Co complexes. For the aldimine- and ketimine-based cobalt complexes, the introduc-
tion of a halogen atom (Br) at 6-position of the pyridine ring afforded polymers in higher
yields but with a relatively lower molecular weight than the complexes without substituent.
The complexes with CH3 group produced polymers in lower yields but with higher molec-
ular weights and narrower molecular weight distributions [54]. This may be because that
the N-OH group in this work is small enough to tolerates steric hindrance at 6-position of
the pyridine ring. When the [Co]/[AlEt2Cl] ratio was changed to 1/10, the polymer yield
and cis-1,4 motif of polyisoprene decreased slightly (entry 7, Table 2). The Ph-substituted
complex Co3 produced polyisoprene with a lower yield at the [Co]/[AlEt2Cl] = 1/50. But,
similar to complex Co1, it exhibited higher reaction activity following the reduction in the
amount of AlEt2Cl, with [Co]/[AlEt2Cl] = 1/10. Though with high hindrance, complexes
Co2 and Co3 provided polyisoprene paralleling that of Co1 in terms of microstructure,
molecular weight (1.7–2.2 × 105 g/mol) and molecular weight distribution (1.7–2.0). These
results indicated that these cobalt catalysts all possess high activity without the effect of
steric hindrance.

Furthermore, the catalytic ability of catalyst Co4 and AlEt2Cl is shown in Table 3.
Less cocatalyst feeding leads to increased polymer yield, and it displayed the highest
activity of 16.3 × 105 g (mol of Co)−1(h)−1 with [Co]/[AlEt2Cl] = 1/50 (entry 2, Table 3).
It was interesting that the complex Co4 exhibited higher activity than Co1 in terms of
the reduction of cocatalyst feeding. However, the polymerization did not conduct at
[Co]/[AlEt2Cl] = 1/5, even though the reaction time was prolonged to 120 min, which was



Polymers 2023, 15, 4660 7 of 11

inferior compared to catalyst Co1. The produced polyisoprene possessed a rather balanced
molecular weight of 10.2–14.5 × 104 g/mol with unimodal molecular weight distributions.
In addition, changing the cocatalyst feeding does not vary the polyisoprene structures with
65% of cis-1,4- unit and 35% of 3,4- unit.

Table 2. Isoprene polymerization using Co1–Co3 with AlEt2Cl as cocatalyst a.

Entry Cat. [Co]/[AlEt2Cl]
Time
(min)

Yield b

(%)
Act. c

(×10−5)
Mn

d

(×10−4)
Mw/Mn

d Microstructure(%) e

cis-1,4 3,4

1 Co1 1/50 10 >99 8.2 15.9 1.7 66 34
2 Co1 1/10 10 >99 8.2 17.9 1.9 64 36
3 Co1 1/50 5 71 11.6 12.8 1.9 66 34
4 Co1 1/10 5 83 13.5 10.1 2.1 64 36
5 Co1 1/5 60 38 0.5 17.5 1.7 63 37
6 Co2 1/50 10 >99 8.2 16.7 1.8 66 34
7 Co2 1/10 10 95 7.8 22.0 1.7 64 36
8 Co3 1/50 10 89 7.3 17.1 2.0 67 33
9 Co3 1/10 10 >99 8.2 18.4 2.0 64 36

a General conditions: total volume = 8 mL; [isoprene] = 2.5 mol/L; [Co]/[isoprene] = 1/2000; 25 ◦C. b Isolated
yield. c gPolymer (mol of Co)−1(h)−1. d Determined by gel permeation chromatography (GPC). e Determined by
1H and 13C NMR.
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Table 3. Isoprene polymerization using Co4 with AlEt2Cl as cocatalyst a.

Entry [Co]/[AlEt2Cl]
Time
(min)

Yield b

(%)
Act. c

(×10−5)
Mn

d

(×10−4)
Mw/Mn

d Microstructure (%) e

cis-1,4 3,4

1 1/100 10 93 7.6 10.2 1.7 65 35
2 1/50 5 >99 16.3 14.5 1.8 65 35
3 1/10 5 97 15.8 12.3 2.0 63 37
4 1/5 120 0 - - - - -

a General conditions: total volume = 8 mL; [isoprene] = 2.5 mol/L; [Co]/[isoprene] = 1/2000; 25 ◦C. b Isolated
yield. c gPolymer (mol of Co)−1h−1. d Determined by gel permeation chromatography (GPC). e Determined by 1H
and 13C NMR.
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4. Conclusions

In conclusion, cobalt catalysts bearing pyridine–oxime and picolinaldehyde O-methyl
oxime ligands were synthesized and characterized. In combination with AlEt2Cl, the Co
complexes exhibited a remarkable activity of 1.6 × 106 g (mol of Co)−1(h)−1 and required
only a small amount of cocatalyst feeding ([Co]/[AlEt2Cl] = 1/10), which is very promising
for the synthetic rubber industry. The complex Co1–Co3 exhibited comparative activity
and selectivity to the catalyst Co4, and the reaction catalyzed by Co1 could conduct even
the Al feeding as low as to 5. Conversely, the polymerization displayed low conversion
at the elevating and reducing reaction temperature, indicating the thermal instability of
active species. And, all the catalyst systems provided polyisoprene with parallel molecular
weights, molecular weight distribution and cis-14- enriched structure.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym15244660/s1, Figures S1–S32: NMR data for polyisoprene.
Figures S33–S48: GPC data for polyisoprene. Table S1: Crystal data and structure refinement
for complex Co2. Table S2: Bond lengths for complex Co2. Table S3: Selected bond angles for
complex Co2.
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