Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = proton loss neutral radicals

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2368 KiB  
Article
Mechanism of Antiradical Activity of Coumarin-Trihydroxybenzohydrazide Derivatives: A Comprehensive Kinetic DFT Study
by Žiko Milanović, Dušan Dimić, Edina H. Avdović, Dušica M. Simijonović, Đura Nakarada, Vladimir Jakovljević, Radiša Vojinović and Zoran S. Marković
Antioxidants 2024, 13(2), 143; https://doi.org/10.3390/antiox13020143 - 24 Jan 2024
Cited by 6 | Viewed by 2024
Abstract
As part of this study, the mechanisms of the antioxidant activity of previously synthesized coumarin–trihydrobenzohydrazine derivatives were investigated: (E)-2,4-dioxo-3-(1-(2-(2″,3″,4″-trihydroxybenzoyl)hydrazineyl)ethylidene)chroman-7-yl acetate (1) and (E)-2,4-dioxo-3-(1-(2-(3″,4″,5″-trihydroxybenzoyl)hydrazineyl)ethylidene)chroman-7-yl acetate (2). The capacity of the compounds to neutralize HO was [...] Read more.
As part of this study, the mechanisms of the antioxidant activity of previously synthesized coumarin–trihydrobenzohydrazine derivatives were investigated: (E)-2,4-dioxo-3-(1-(2-(2″,3″,4″-trihydroxybenzoyl)hydrazineyl)ethylidene)chroman-7-yl acetate (1) and (E)-2,4-dioxo-3-(1-(2-(3″,4″,5″-trihydroxybenzoyl)hydrazineyl)ethylidene)chroman-7-yl acetate (2). The capacity of the compounds to neutralize HO was assessed by EPR spectroscopy. The standard mechanisms of antioxidant action, Hydrogen Atom Transfer (HAT), Sequential Proton Loss followed by Electron Transfer (SPLET), Single-Electron Transfer followed by Proton Transfer (SET-PT), and Radical Adduct/Coupling Formation (RAF/RCF) were examined using the QM-ORSA methodology. It was estimated that the newly synthesized compounds, under physiological conditions, exhibited antiradical activity via SPLET and RCF mechanisms. Based on the estimated overall rate constants (koverall), it can be concluded that 2 exhibited a greater antiradical capacity. The obtained values indicated a good correlation with the EPR spectroscopy results. Both compounds exhibit approximately 1.5 times more activity in comparison to the precursor compound used in the synthesis (gallic acid). Full article
(This article belongs to the Special Issue Oxidative Stress and Antioxidants in Computational Chemistry)
Show Figures

Figure 1

31 pages, 18429 KiB  
Review
Electrochemical and Spectroscopic Characterization of Oxidized Intermediate Forms of Vitamin E
by Richard D. Webster
Molecules 2022, 27(19), 6194; https://doi.org/10.3390/molecules27196194 - 21 Sep 2022
Cited by 9 | Viewed by 3402
Abstract
Vitamin E, a collection of lipophilic phenolic compounds based on chroman-6-ol, has a rich and fascinating oxidative chemistry involving a range of intermediate forms, some of which are proposed to be important in its biological functions. In this review, the available electrochemical and [...] Read more.
Vitamin E, a collection of lipophilic phenolic compounds based on chroman-6-ol, has a rich and fascinating oxidative chemistry involving a range of intermediate forms, some of which are proposed to be important in its biological functions. In this review, the available electrochemical and spectroscopic data on these oxidized intermediates are summarized, along with a discussion on how their lifetimes and chemical stability are either typical of similar phenolic and chroman-6-ol derived compounds, or atypical and unique to the specific oxidized isomeric form of vitamin E. The overall electrochemical oxidation mechanism for vitamin E can be summarized as involving the loss of two-electrons and one-proton, although the electron transfer and chemical steps can be controlled to progress along different pathways to prolong the lifetimes of discreet intermediates by modifying the experimental conditions (applied electrochemical potential, aqueous or non-aqueous solvent, and pH). Depending on the environment, the electrochemical reactions can involve single electron transfer (SET), proton-coupled electron transfer (PCET), as well as homogeneous disproportionation and comproportionation steps. The intermediate species produced via chemical or electrochemical oxidation include phenolates, phenol cation radicals, phenoxyl neutral radicals, dications, diamagnetic cations (phenoxeniums) and para–quinone methides. The cation radicals of all the tocopherols are atypically long-lived compared to the cation radicals of other phenols, due to their relatively weak acidity. The diamagnetic cation derived from α–tocopherol is exceptionally long-lived compared to the diamagnetic cations from the other β–, γ– and δ–isomers of vitamin E and compared with other phenoxenium cations derived from phenolic compounds. In contrast, the lifetime of the phenoxyl radical derived from α–tocopherol, which is considered to be critical in biological reactions, is typical for what is expected for a compound with its structural features. Over longer times via hydrolysis reactions, hydroxy para–quinone hemiketals and quinones can be formed from the oxidized intermediates, which can themselves undergo reduction processes to form intermediate anion radicals and dianions. Methods for generating the oxidized intermediates by chemical, photochemical and electrochemical methods are discussed, along with a summary of how the final products vary depending on the method used for oxidation. Since the intermediates mainly only survive in solution, they are most often monitored using UV-vis spectroscopy, FTIR or Raman spectroscopies, and EPR spectroscopy, with the spectroscopic techniques sometimes combined with fast photoinitiated excitation and time-resolved spectroscopy for detection of short-lived species. Full article
Show Figures

Figure 1

25 pages, 3630 KiB  
Review
The Two Faces of the Guanyl Radical: Molecular Context and Behavior
by Chryssostomos Chatgilialoglu
Molecules 2021, 26(12), 3511; https://doi.org/10.3390/molecules26123511 - 9 Jun 2021
Cited by 11 | Viewed by 3579
Abstract
The guanyl radical or neutral guanine radical G(-H) results from the loss of a hydrogen atom (H) or an electron/proton (e/H+) couple from the guanine structures (G). The guanyl radical exists in two tautomeric forms. As [...] Read more.
The guanyl radical or neutral guanine radical G(-H) results from the loss of a hydrogen atom (H) or an electron/proton (e/H+) couple from the guanine structures (G). The guanyl radical exists in two tautomeric forms. As the modes of formation of the two tautomers, their relationship and reactivity at the nucleoside level are subjects of intense research and are discussed in a holistic manner, including time-resolved spectroscopies, product studies, and relevant theoretical calculations. Particular attention is given to the one-electron oxidation of the GC pair and the complex mechanism of the deprotonation vs. hydration step of GC•+ pair. The role of the two G(-H) tautomers in single- and double-stranded oligonucleotides and the G-quadruplex, the supramolecular arrangement that attracts interest for its biological consequences, are considered. The importance of biomarkers of guanine DNA damage is also addressed. Full article
(This article belongs to the Special Issue Biomimetic Radical Chemistry and Applications 2021)
Show Figures

Graphical abstract

17 pages, 1808 KiB  
Review
Photo Protection of Haematococcus pluvialis Algae by Astaxanthin: Unique Properties of Astaxanthin Deduced by EPR, Optical and Electrochemical Studies
by A. Ligia Focsan, Nikolay E. Polyakov and Lowell D. Kispert
Antioxidants 2017, 6(4), 80; https://doi.org/10.3390/antiox6040080 - 21 Oct 2017
Cited by 39 | Viewed by 9946
Abstract
Abstract The antioxidant astaxanthin is known to accumulate in Haematococcus pluvialis algae under unfavorable environmental conditions for normal cell growth. The accumulated astaxanthin functions as a protective agent against oxidative stress damage, and tolerance to excessive reactive oxygen species (ROS) is greater in [...] Read more.
Abstract The antioxidant astaxanthin is known to accumulate in Haematococcus pluvialis algae under unfavorable environmental conditions for normal cell growth. The accumulated astaxanthin functions as a protective agent against oxidative stress damage, and tolerance to excessive reactive oxygen species (ROS) is greater in astaxanthin-rich cells. The detailed mechanisms of protection have remained elusive, however, our Electron Paramagnetic Resonance (EPR), optical and electrochemical studies on carotenoids suggest that astaxanthin’s efficiency as a protective agent could be related to its ability to form chelate complexes with metals and to be esterified, its inability to aggregate in the ester form, its high oxidation potential and the ability to form proton loss neutral radicals under high illumination in the presence of metal ions. The neutral radical species formed by deprotonation of the radical cations can be very effective quenchers of the excited states of chlorophyll under high irradiation. Full article
(This article belongs to the Special Issue Carotenoids—Antioxidant Properties)
Show Figures

Figure 1

Back to TopTop