Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = premature chromosome condensation (PCC) test

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1801 KB  
Article
Investigation of DNA Damage and Cell-Cycle Distribution in Human Peripheral Blood Lymphocytes under Exposure to High Doses of Proton Radiotherapy
by Justyna Miszczyk
Biology 2021, 10(2), 111; https://doi.org/10.3390/biology10020111 - 3 Feb 2021
Cited by 5 | Viewed by 3573
Abstract
This study systematically investigates how a single high-dose therapeutic proton beam versus X-rays influences cell-cycle phase distribution and DNA damage in human peripheral blood lymphocytes (HPBLs). Blood samples from ten volunteers (both male and female) were irradiated with doses of 8.00, 13.64, 15.00, [...] Read more.
This study systematically investigates how a single high-dose therapeutic proton beam versus X-rays influences cell-cycle phase distribution and DNA damage in human peripheral blood lymphocytes (HPBLs). Blood samples from ten volunteers (both male and female) were irradiated with doses of 8.00, 13.64, 15.00, and 20.00 Gy of 250 kV X-rays or 60 MeV protons. The dose–effect relations were calculated and distributed by plotting the frequencies of DNA damage of excess Premature Chromosome Condensation (PCC) fragments and rings in the G2/M phase, obtained via chemical induction with calyculin A. The Papworth’s u test was used to evaluate the distribution of DNA damage. The study shows that high doses of protons induce HPBL DNA damage in the G2/M phase differently than X-rays do. The results indicate a different distribution of DNA damage following high doses of irradiation with protons versus photons between donors, types of radiation, and doses. The proliferation index confirms the impact of high doses of mitosis and the influence of radiotherapy type on the different HPBL response. The results illuminate the cellular and molecular mechanisms that underlie differences in the distribution of DNA damage and cell-cycle phases; these findings may yield an improvement in the efficacy of the radiotherapies used. Full article
(This article belongs to the Collection Applied Physics in Cancer Cells)
Show Figures

Figure 1

18 pages, 2525 KB  
Article
Interphase Cytogenetic Analysis of Micronucleated and Multinucleated Cells Supports the Premature Chromosome Condensation Hypothesis as the Mechanistic Origin of Chromothripsis
by Antonio Pantelias, Ioanna Karachristou, Alexandros G. Georgakilas and Georgia I. Terzoudi
Cancers 2019, 11(8), 1123; https://doi.org/10.3390/cancers11081123 - 6 Aug 2019
Cited by 23 | Viewed by 6548
Abstract
The discovery of chromothripsis in cancer genomes challenges the long-standing concept of carcinogenesis as the result of progressive genetic events. Despite recent advances in describing chromothripsis, its mechanistic origin remains elusive. The prevailing conception is that it arises from a massive accumulation of [...] Read more.
The discovery of chromothripsis in cancer genomes challenges the long-standing concept of carcinogenesis as the result of progressive genetic events. Despite recent advances in describing chromothripsis, its mechanistic origin remains elusive. The prevailing conception is that it arises from a massive accumulation of fragmented DNA inside micronuclei (MN), whose defective nuclear envelope ruptures or leads to aberrant DNA replication, before main nuclei enter mitosis. An alternative hypothesis is that the premature chromosome condensation (PCC) dynamics in asynchronous micronucleated cells underlie chromosome shattering in a single catastrophic event, a hallmark of chromothripsis. Specifically, when main nuclei enter mitosis, premature chromatin condensation provokes the shattering of chromosomes entrapped inside MN, if they are still undergoing DNA replication. To test this hypothesis, the agent RO-3306, a selective ATP-competitive inhibitor of CDK1 that promotes cell cycle arrest at the G2/M boundary, was used in this study to control the degree of cell cycle asynchrony between main nuclei and MN. By delaying the entrance of main nuclei into mitosis, additional time was allowed for the completion of DNA replication and duplication of chromosomes inside MN. We performed interphase cytogenetic analysis using asynchronous micronucleated cells generated by exposure of human lymphocytes to γ-rays, and heterophasic multinucleated Chinese hamster ovary (CHO) cells generated by cell fusion procedures. Our results demonstrate that the PCC dynamics during asynchronous mitosis in micronucleated or multinucleated cells are an important determinant of chromosome shattering and may underlie the mechanistic origin of chromothripsis. Full article
Show Figures

Graphical abstract

Back to TopTop