Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = praziquantel hemihydrate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3683 KB  
Article
Mechanochemical Synthesis of Praziquantel Hemihydrate in the Presence of Five Solvents with Different Water Miscibility
by Ilenia D’Abbrunzo, Dario Voinovich and Beatrice Perissutti
Crystals 2024, 14(4), 374; https://doi.org/10.3390/cryst14040374 - 16 Apr 2024
Cited by 4 | Viewed by 2081
Abstract
In this study, we report the mechanochemical synthesis of praziquantel hemihydrate in the presence of five solvents with different water miscibility. The commercially available praziquantel Form A (a racemic anhydrate structure) was ground in the presence of several water–solvent mixtures using two grinding [...] Read more.
In this study, we report the mechanochemical synthesis of praziquantel hemihydrate in the presence of five solvents with different water miscibility. The commercially available praziquantel Form A (a racemic anhydrate structure) was ground in the presence of several water–solvent mixtures using two grinding procedures (i.e., direct liquid-assisted grinding and neat grinding plus liquid-assisted grinding). Five organic solvents (i.e., acetic acid, 2-pyrrolidone, ethanol, ethyl acetate and hexane) were chosen considering their different miscibility with water and their capability to form solvates with praziquantel (documented for acetic acid and 2-pyrrolidone). The results suggested that the use of a second solvent has a detrimental effect on the formation of the hemihydrate. The inclusion of water in the solid is even worse in the case of water-miscible solvents, probably due to the favored interactions between the liquids. In fact, hexane is the only solvent permitting the mechanochemical crystallization of praziquantel hemihydrate to a limited extent. Importantly, interconversion studies between the hydrate/monosolvate/anhydrous forms revealed a preferential inclusion of solvents over water in the crystal lattice when using acetic acid or 2-pyrrolidone and complete dehydration of the hemihydrate and conversion in the most thermodynamically stable polymorph A of praziquantel with ethanol, ethyl acetate and hexane. Full article
Show Figures

Graphical abstract

22 pages, 4257 KB  
Article
Mechanochemical Formation of Racemic Praziquantel Hemihydrate with Improved Biopharmaceutical Properties
by Debora Zanolla, Dritan Hasa, Mihails Arhangelskis, Gabriela Schneider-Rauber, Michele R. Chierotti, Jennifer Keiser, Dario Voinovich, William Jones and Beatrice Perissutti
Pharmaceutics 2020, 12(3), 289; https://doi.org/10.3390/pharmaceutics12030289 - 23 Mar 2020
Cited by 27 | Viewed by 6134
Abstract
Praziquantel (PZQ) is the first-line drug used against schistosomiasis, one of the most common parasitic diseases in the world. A series of crystalline structures including two new polymorphs of the pure drug and a series of cocrystals of PZQ have been discovered and [...] Read more.
Praziquantel (PZQ) is the first-line drug used against schistosomiasis, one of the most common parasitic diseases in the world. A series of crystalline structures including two new polymorphs of the pure drug and a series of cocrystals of PZQ have been discovered and deposited in the Cambridge Structural Database (CSD). This work adds to the list of multicomponent forms of PZQ a relevant example of a racemic hemihydrate (PZQ-HH), obtainable from commercial PZQ (polymorphic Form A) through mechanochemistry. Noteworthy, the formation of the new hemihydrate strongly depends on the initial polymorphic form of PZQ and on the experimental conditions used. The new PZQ-HH has been fully characterized by means of HPLC, Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), Hot-Stage Microscopy (SEM), Powder X-Ray Diffraction (PXRD), Scanning Electron Microscopy (SEM), FT-IR, polarimetry, solid-state NMR (SS-NMR), solubility and intrinsic dissolution rate (IDR), and in vitro tests on Schistosoma mansoni adults. The crystal structure was solved from the powder X-ray diffraction pattern and validated by periodic-DFT calculations. The new bioactive hemihydrate was physically stable for three months and showed peculiar biopharmaceutical features including enhanced solubility and a double intrinsic dissolution rate in water in comparison to the commercially available PZQ Form A. Full article
(This article belongs to the Special Issue Drug Polymorphism and Dosage Form Design)
Show Figures

Graphical abstract

Back to TopTop