Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = powder extrusion moulding (PEM)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 15081 KiB  
Article
Production of Permanent Magnets from Recycled NdFeB Powder with Powder Extrusion Moulding
by Stefan Rathfelder, Stephan Schuschnigg, Christian Kukla, Clemens Holzer and Carlo Burkhardt
J. Manuf. Mater. Process. 2024, 8(2), 81; https://doi.org/10.3390/jmmp8020081 - 18 Apr 2024
Cited by 2 | Viewed by 4945
Abstract
In the last fifteen years, several groups have investigated metal injection moulding (MIM) of NdFeB powder to produce isotropic or anisotropic rare earth magnets of greater geometric complexity than that achieved by the conventional pressing and sintering approach. However, due to the powder’s [...] Read more.
In the last fifteen years, several groups have investigated metal injection moulding (MIM) of NdFeB powder to produce isotropic or anisotropic rare earth magnets of greater geometric complexity than that achieved by the conventional pressing and sintering approach. However, due to the powder’s high affinity for oxygen and carbon uptake, sufficient remanence and coercivity remains difficult. This article presents a novel approach to producing NdFeB magnets from recycled material using Powder Extrusion Moulding (PEM) in a continuous process. The process route uses powder obtained from recycling rare earth magnets through Hydrogen Processing of Magnetic Scrap (HPMS). This article presents the results of tailored powder processing, the production of mouldable feedstock based on a special binder system, and moulding with PEM to produce green and sintered parts. The magnetic properties and microstructures of debinded and sintered samples are presented and discussed, focusing on the influence of filling ratio and challenging processing conditions on interstitial content as well as density and magnetic properties. Full article
Show Figures

Figure 1

Back to TopTop