Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = potato powder gel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2109 KiB  
Article
Effect of Freezing Temperature on the Thermal, Rheological, and Gelatinization Properties of Freeze-Thaw-Dehydrated Potato Powder
by Xinyan Duan, Tingting Zhang, Qiannan Liu, Liang Zhang, Wei Liu, Ruixuan Zhao and Honghai Hu
Gels 2024, 10(11), 744; https://doi.org/10.3390/gels10110744 - 15 Nov 2024
Cited by 1 | Viewed by 981
Abstract
To promote the application of freeze-thaw-dehydrated (FTD) potatoes and their gels, this study aimed to investigate the effects of freezing temperature on the physicochemical and gel properties of FTD potato powder and their correlation. The results revealed that, as the freezing temperature decreased, [...] Read more.
To promote the application of freeze-thaw-dehydrated (FTD) potatoes and their gels, this study aimed to investigate the effects of freezing temperature on the physicochemical and gel properties of FTD potato powder and their correlation. The results revealed that, as the freezing temperature decreased, the solubility exhibited an overall downwards trend resulting from soluble solids and amylose liberation. Owing to the better cell integrity at −20 °C, the solubility was greater than that of the other treatment groups. In contrast, the trough viscosity and melting enthalpy increased, and the final viscosity, and setback first increased but then decreased. Regarding the properties of the FTD potato powder gel, the storage modulus, loss modulus, hardness, adhesiveness, chewiness, and consistency first increased but then decreased with decreasing freezing temperature. At a moderate freezing temperature (−20 °C), the solubility and stability of the FTD potato powder were well maintained, and the final viscosity, setback, and hardness reached their highest values. Correlation analysis revealed that, with decreasing freezing temperature, the amount of FTD potato powder initially increased, followed by a decrease in the final viscosity and setback. This trend was positively correlated with the hardness of the FTD potato gel (r = 0.98, r = 0.93). Full article
(This article belongs to the Special Issue Food Gels: Structures, Properties and Applications)
Show Figures

Graphical abstract

19 pages, 3568 KiB  
Article
Fully Biodegradable Edible Packaging Foils on the Basis of Potato Starch–Lipid–Protein Ternary Complexes
by Agnieszka Folentarska, Anna Kulakowska, Volodymyr Pavlyuk, Magdalena Krystyjan, Piotr Tomasik and Wojciech Ciesielski
Macromol 2023, 3(4), 723-741; https://doi.org/10.3390/macromol3040041 - 19 Oct 2023
Cited by 1 | Viewed by 2438
Abstract
Fully biodegradable foils were prepared from potato starch, egg albumin, and either stearic or oleic acid. Foils prepared with oleic acid have higher tensile strength, relative elongation, thermal stability, and a more uniform macrostructure. Foils produced with stearic acid were characterized by a [...] Read more.
Fully biodegradable foils were prepared from potato starch, egg albumin, and either stearic or oleic acid. Foils prepared with oleic acid have higher tensile strength, relative elongation, thermal stability, and a more uniform macrostructure. Foils produced with stearic acid were characterized by a higher index of crystallinity than foils made with oleic acid. Functional properties of the foils can be modulated involving a sequence of blending of their components. The simultaneous blending of starch (10 weight parts of 5% aq. gel), albumin (1 weight part of liquid composed of 1 g of albumin in 7 mL of water), and stearic acid (5 weight parts of powder) provided the foil with the highest tensile strength (64.91 MPa/mm). Independently of the method of preparation, foils were white with a greenish-yellow shade. Analysis of the ATR-FTIR spectra showed that the macrostructure of the foils is built involving interactions between all three components. Full article
Show Figures

Figure 1

19 pages, 1694 KiB  
Review
Carbohydrates and Endurance Exercise: A Narrative Review of a Food First Approach
by Alireza Naderi, Nathan Gobbi, Ajmol Ali, Erfan Berjisian, Amin Hamidvand, Scott C. Forbes, Majid S. Koozehchian, Raci Karayigit and Bryan Saunders
Nutrients 2023, 15(6), 1367; https://doi.org/10.3390/nu15061367 - 11 Mar 2023
Cited by 17 | Viewed by 23848
Abstract
Carbohydrate (CHO) supplements such as bars, gels, drinks and powders have become ubiquitous as effective evidence-based CHO sources that improve endurance exercise performance. However, athletes are increasingly turning to more cost-effective ‘food-first’ approaches for CHO ingestion to improve exercise performance. Mixed CHO foods [...] Read more.
Carbohydrate (CHO) supplements such as bars, gels, drinks and powders have become ubiquitous as effective evidence-based CHO sources that improve endurance exercise performance. However, athletes are increasingly turning to more cost-effective ‘food-first’ approaches for CHO ingestion to improve exercise performance. Mixed CHO foods including cooked lentils, oats, honey, raisins, rice, and potatoes are all effective pre-exercise CHO food sources. Caution is advised when selecting some of these foods as a primary CHO source, as some athletes may be prone to gastrointestinal discomfort—especially regarding those foods where the quantities required for recommended CHO intake may be voluminous (e.g., potatoes). Palatability may be another barrier to the ingestion of some of these CHO-rich foods. Although most of these CHO-rich foods appear effective for exercise performance or recovery when consumed pre- and post-exercise, not all are viable to ingest during exercise due to difficulties in the quantities required, transport, and/or gastrointestinal discomfort. Raisins, bananas and honey may be particularly useful CHO foods for consumption during exercise, as they are easily transportable. Athletes should trial CHO food sources before, during and/or following training before implementation during competition. Full article
(This article belongs to the Special Issue Feature Paper in Carbohydrate 2023)
Show Figures

Figure 1

14 pages, 1428 KiB  
Article
Particle Agglomeration and Properties of Pregelatinized Potato Starch Powder
by Hyunwoo Lee and Byoungseung Yoo
Gels 2023, 9(2), 93; https://doi.org/10.3390/gels9020093 - 20 Jan 2023
Cited by 11 | Viewed by 5217
Abstract
Pregelatinized starches are used as thickeners in many instant food products. The unique properties of pregelatinized starches, such as their dispersibility in water and high viscosity, are generally desirable for instant food products. However, powdered starches cannot be easily dispersed in cold water [...] Read more.
Pregelatinized starches are used as thickeners in many instant food products. The unique properties of pregelatinized starches, such as their dispersibility in water and high viscosity, are generally desirable for instant food products. However, powdered starches cannot be easily dispersed in cold water due to clumping. The most reliable method to solve this problem is particle size enlargement by an agglomeration technique that causes a structural change in the starch. In this study, pregelatinized potato starch powder (PPSP) was agglomerated in a fluidized bed agglomerator, after which the physical, structural, and rheological properties of the PPSP agglomerated with different maltodextrin (MD) binder concentrations were investigated. The powder solubility and flowability (CI and HR) of all the agglomerated PPSPs were improved, and the particle size (D50) tended to increase as the MD concentration increased, except for the control (0% MD) and the 40% MD. The changes in the particle size of the agglomerated PPSPs were consistent with the SEM image analysis. The magnitudes of the gel strength and viscoelastic moduli (G′ and G″) of the agglomerated PPSPs with 10% MD were higher than those of the control due to the more stable structure formed by better intermolecular interaction in the starch and MD during the agglomeration process. Therefore, our results indicated that the fluidized bed agglomeration process and the MD addition as a binder solution greatly influence the physical, structural, and rheological properties of PPSP. Full article
(This article belongs to the Special Issue Food Colloids:From Design to Application)
Show Figures

Graphical abstract

24 pages, 2507 KiB  
Article
Effect of Cactus (Opuntia ficus-indica) and Acacia (Acacia seyal) Gums on the Pasting, Thermal, Textural, and Rheological Properties of Corn, Sweet Potato, and Turkish Bean Starches
by Shahzad Hussain, Abdellatif A. Mohamed, Mohamed S. Alamri, Mohamed A. Ibraheem, Akram A. Abdo Qasem, Tawfiq Alsulami and Ibrahim A. Ababtain
Molecules 2022, 27(3), 701; https://doi.org/10.3390/molecules27030701 - 21 Jan 2022
Cited by 15 | Viewed by 2961
Abstract
This study was planned to explore the locally available natural sources of gum hydrocolloids as a natural modifier of different starch properties. Corn (CS), sweet potato (SPS), and Turkish bean (TBS) starches were mixed with locally extracted native or acetylated cactus (CG) and [...] Read more.
This study was planned to explore the locally available natural sources of gum hydrocolloids as a natural modifier of different starch properties. Corn (CS), sweet potato (SPS), and Turkish bean (TBS) starches were mixed with locally extracted native or acetylated cactus (CG) and acacia (AG) gums at 2 and 5% replacement levels. The binary mixtures (starch–gums) were prepared in water, freeze dried, ground to powder, and stored airtight. A rapid viscoanalyzer (RVA), differential scanning calorimeter (DSC), texture analyzer, and dynamic rheometer were used to explore their pasting, thermal, textural, and rheological properties. The presence of acetylated AG or CG increased the final viscosity (FV) in all three starches when compared to starch pastes containing native gums. Plain SPS dispersion had a higher pasting temperature (PT) than CS and TBS. The addition of AG or CG increased the PT of CS, SPS, and TBS. The thermograms revealed the overall enthalpy change of the starch and gum blends: TBS > SPS > CS. The peak temperature (Tp) of starches increased with increasing gum concentration from 2 to 5% for both AG and CG native and modified gums. When compared to the control gels, the addition of 2% CG, either native or modified, reduced the syneresis of starch gels. However, further addition (5% CG) increased the gels’ syneresis. Furthermore, the syneresis for the first cycle on the fourth day was higher than the second cycle on the eighth day for all starches. The addition of native and acetylated CG reduced the hardness of starch gels at all concentrations tested. All of the starch dispersions had higher G′ than G″ values, indicating that they were more elastic and less viscous with or without the gums. The apparent viscosity of all starch gels decreased as shear was increased, with profiles indicating time-dependent thixotropic behavior. All of the starch gels, with or without gums, showed a non-Newtonian shear thinning trend in the shear stress vs. shear rate graphs. The addition of acetylated CG gum to CS resulted in a higher activation energy (Ea) than the native counterparts and the control. More specifically, starch gels with a higher gum concentration (5%) provided greater Ea than their native counterparts. Full article
Show Figures

Figure 1

Back to TopTop