Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = post-fire fate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 8609 KiB  
Article
Revealing the Impact of Understory Fires on Stem Survival in Palms (Arecaceae): An Experimental Approach Using Predictive Models
by Marcus Vinicius de Athaydes Liesenfeld
Fire 2025, 8(1), 2; https://doi.org/10.3390/fire8010002 - 24 Dec 2024
Cited by 1 | Viewed by 991
Abstract
Amid increasing deforestation, surface fires reaching the forest understory are one of the primary threats to Amazonian ecosystems. Despite extensive research on post-fire mortality in woody species, the literature on palm resilience to fire is scant. This study investigates post-fire mortality in four [...] Read more.
Amid increasing deforestation, surface fires reaching the forest understory are one of the primary threats to Amazonian ecosystems. Despite extensive research on post-fire mortality in woody species, the literature on palm resilience to fire is scant. This study investigates post-fire mortality in four understory palms, namely Bactris maraja Mart., Chamaedorea pauciflora Mart., Geonoma deversa (Poit.) Kunth, Hyospathe elegans Mart., and juvenile individuals of Euterpe precatoria Mart. (açaí palm). The objectives included (a) comparing post-fire responses; (b) developing mortality models based on severity variables; and (c) evaluating if diameter protects bud stems from heat flux. Conducted at the edge of an Ombrophylous Forest in Alto Juruá Acre, Brazil (7°45′ S, 72°22′ W), the experiment subjected 85 individuals to controlled burning in a 1 m2 area near the palm stem, with temperature sampling using K thermocouples. The results showed varying mortality rates among species, with a larger palm stem diameter correlating to reduced mortality. Crown burning patterns significantly influenced mortality, especially for Euterpe precatoria. The species exhibited diverse regrowth capacities, with B. maraja showing the highest number and tallest basal resprouts. The variation in morphology among species appeared to be more important than the amount of heat flux applied to each individual involved in the experiment, as no significant difference was observed in the time–temperature history measured. This study underscores post-fire plant mortality as a critical indicator of fire severity, essential for understanding its ecological impacts. Full article
Show Figures

Figure 1

25 pages, 6526 KiB  
Article
Evaluating the Persistence of Post-Wildfire Ash: A Multi-Platform Spatiotemporal Analysis
by Sarah A. Lewis, Peter R. Robichaud, Andrew T. Hudak, Eva K. Strand, Jan U. H. Eitel and Robert E. Brown
Fire 2021, 4(4), 68; https://doi.org/10.3390/fire4040068 - 9 Oct 2021
Cited by 10 | Viewed by 4254
Abstract
As wildland fires amplify in size in many regions in the western USA, land and water managers are increasingly concerned about the deleterious effects on drinking water supplies. Consequences of severe wildfires include disturbed soils and areas of thick ash cover, which raises [...] Read more.
As wildland fires amplify in size in many regions in the western USA, land and water managers are increasingly concerned about the deleterious effects on drinking water supplies. Consequences of severe wildfires include disturbed soils and areas of thick ash cover, which raises the concern of the risk of water contamination via ash. The persistence of ash cover and depth were monitored for up to 90 days post-fire at nearly 100 plots distributed between two wildfires in Idaho and Washington, USA. Our goal was to determine the most ‘cost’ effective, operational method of mapping post-wildfire ash cover in terms of financial, data volume, time, and processing costs. Field measurements were coupled with multi-platform satellite and aerial imagery collected during the same time span. The image types spanned the spatial resolution of 30 m to sub-meter (Landsat-8, Sentinel-2, WorldView-2, and a drone), while the spectral resolution spanned visible through SWIR (short-wave infrared) bands, and they were all collected at various time scales. We that found several common vegetation and post-fire spectral indices were correlated with ash cover (r = 0.6–0.85); however, the blue normalized difference vegetation index (BNDVI) with monthly Sentinel-2 imagery was especially well-suited for monitoring the change in ash cover during its ephemeral period. A map of the ash cover can be used to estimate the ash load, which can then be used as an input into a hydrologic model predicting ash transport and fate, helping to ultimately improve our ability to predict impacts on downstream water resources. Full article
(This article belongs to the Special Issue Advances in the Assessment of Fire Impacts on Hydrology)
Show Figures

Figure 1

Back to TopTop