Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = possible collapse prism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3199 KB  
Article
Geomechanical Basis for Assessing Open-Pit Slope Stability in High-Altitude Gold Mining
by Farit Nizametdinov, Rinat Nizametdinov, Denis Akhmatnurov, Nail Zamaliyev, Ravil Mussin, Nikita Ganyukov, Krzysztof Skrzypkowski, Waldemar Korzeniowski, Jerzy Stasica and Zbigniew Rak
Appl. Sci. 2025, 15(15), 8372; https://doi.org/10.3390/app15158372 - 28 Jul 2025
Viewed by 994
Abstract
The development of mining operations in high-altitude regions is associated with a number of geomechanical challenges caused by increased rock fracturing, adverse climatic conditions, and high seismic activity. These issues are particularly relevant for the exploitation of gold ore deposits, where the stability [...] Read more.
The development of mining operations in high-altitude regions is associated with a number of geomechanical challenges caused by increased rock fracturing, adverse climatic conditions, and high seismic activity. These issues are particularly relevant for the exploitation of gold ore deposits, where the stability of open-pit slopes directly affects both safety and extraction efficiency. The aim of this study is to develop and practically substantiate a comprehensive approach to assessing and ensuring slope stability, using the Bozymchak gold ore deposit—located in a high-altitude and seismically active zone—as a case study. The research involves the laboratory testing of rock samples obtained from engineering–geological boreholes, field shear tests on rock prisms, laser scanning of pit slopes, and digital geomechanical modeling. The developed calculation schemes take into account the structural features of the rock mass, geological conditions, and the design contours of the pit. In addition, special bench excavation technologies with pre-shear slotting and automated GeoMoS monitoring are implemented for real-time slope condition tracking. The results of the study make it possible to reliably determine the strength characteristics of the rocks under natural conditions, identify critical zones of potential collapse, and develop recommendations for optimizing slope parameters and mining technologies. The implemented approach ensures the required level of safety. Full article
(This article belongs to the Special Issue Latest Advances in Rock Mechanics and Geotechnical Engineering)
Show Figures

Figure 1

16 pages, 5134 KB  
Article
Substantiation of the Direction for Mining Operations That Develop under Conditions of Shear Processes Caused by Hydrostatic Pressure
by Pavlo Saik, Oleksii Cherniaiev, Oleh Anisimov and Kanay Rysbekov
Sustainability 2023, 15(22), 15690; https://doi.org/10.3390/su152215690 - 7 Nov 2023
Cited by 19 | Viewed by 1631
Abstract
This research is aimed to substantiate the optimally safe direction for mining operations developing in the conditions of shear processes under hydrostatic pressure influence when mining the Zavalivskyi Graphite Deposit. Using a graphical–analytical method, the slope stability index of the Pivdenno–Skhidnyi open-pit walls [...] Read more.
This research is aimed to substantiate the optimally safe direction for mining operations developing in the conditions of shear processes under hydrostatic pressure influence when mining the Zavalivskyi Graphite Deposit. Using a graphical–analytical method, the slope stability index of the Pivdenno–Skhidnyi open-pit walls in the Zavalivskyi deposit and the safe distance for placing mining equipment have been determined. This method involves constructing a calculation scheme for each studied open-pit wall area based on the determined parameters by algebraically adding forces along a curvilinear shear surface, taking into account hydrostatic pressure within a possible collapse prism. During the research, factors have been identified that influence the optimal direction for stripping and mining operations developing under conditions of shear processes caused by flooding of lower horizons at the Zavalivskyi Graphite Plant. It has been revealed that the determining factor when choosing the direction for the development of mining operations is the safety factor of the open-pit working wall, ranging from 0.9 to 2.71 in the studied areas. Moreover, according to current normative documents, this indicator should not be less than 1.3. It has been determined that a promising direction for the development of mining operations in the Pivdenno–Skhidnyi open-pit mine is its south-western, western, and north-eastern areas, with a length of 556 m and a safe size for placing mining equipment of 27.12–32.54 m. Recommendations and measures for conducting mining operations have been developed to ensure the stable condition of the open-pit walls. Full article
Show Figures

Figure 1

13 pages, 3366 KB  
Article
Investigating the Retrofitting Effect of Fiber-Reinforced Plastic and Steel Mesh Casting on Unreinforced Masonry Walls
by Faizan Halim, Afnan Ahmad, Mohammad Adil, Asad Khan, Mohamed Ghareeb, Majed Alzara, Sayed M. Eldin, Fahad Alsharari and Ahmed M. Yosri
Materials 2023, 16(1), 257; https://doi.org/10.3390/ma16010257 - 27 Dec 2022
Cited by 3 | Viewed by 2679
Abstract
Unreinforced masonry (URM) is one of the most popular construction materials around the world, but vulnerable during earthquakes. Due to its brittle nature, the URM structures may lead to a possible collapse of the wall of a building during earthquake events causing casualties. [...] Read more.
Unreinforced masonry (URM) is one of the most popular construction materials around the world, but vulnerable during earthquakes. Due to its brittle nature, the URM structures may lead to a possible collapse of the wall of a building during earthquake events causing casualties. In the current research, an attempt is made to enhance the seismic capacity of URM structures by proposing a new innovative composite material that can improve the shear strength and deformation capacity of the URM wall systems. The results revealed that the fiber-reinforced plastic having high tensile and shear stiffness can significantly increase in-plane as well as out-of-plane bending strength of the URM wall. It was recorded that the bending moment of the prism increased up to 549.5% by increasing the bending moment from 490 N*mm to 3183 N*mm per mm deflection of prism upon using glass fibers. Moreover, the ductility ratio amplified up to 5.73 times while the stiffness ratio increased up to 4.16 times with the aid of glass fibers. Since the material used in this research work is low cost, easily available, and no need for any skilled labor, which is economically good. Therefore, the URM walls retrofitted with fiber-reinforced plastic is an economical solution. Full article
Show Figures

Figure 1

Back to TopTop