Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = portable suction device

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3015 KiB  
Review
Chest Tubes and Pleural Drainage: History and Current Status in Pleural Disease Management
by Claudio Sorino, David Feller-Kopman, Federico Mei, Michele Mondoni, Sergio Agati, Giampietro Marchetti and Najib M. Rahman
J. Clin. Med. 2024, 13(21), 6331; https://doi.org/10.3390/jcm13216331 - 23 Oct 2024
Cited by 2 | Viewed by 20569
Abstract
Thoracostomy and chest tube placement are key procedures in treating pleural diseases involving the accumulation of fluids (e.g., malignant effusions, serous fluid, pus, or blood) or air (pneumothorax) in the pleural cavity. Initially described by Hippocrates and refined through the centuries, chest drainage [...] Read more.
Thoracostomy and chest tube placement are key procedures in treating pleural diseases involving the accumulation of fluids (e.g., malignant effusions, serous fluid, pus, or blood) or air (pneumothorax) in the pleural cavity. Initially described by Hippocrates and refined through the centuries, chest drainage achieved a historical milestone in the 19th century with the creation of closed drainage systems to prevent the entry of air into the pleural space and reduce infection risk. The introduction of plastic materials and the Heimlich valve further revolutionized chest tube design and function. Technological advancements led to the availability of various chest tube designs (straight, angled, and pig-tail) and drainage systems, including PVC and silicone tubes with radiopaque stripes for better radiological visualization. Modern chest drainage units can incorporate smart digital systems that monitor and graphically report pleural pressure and evacuated fluid/air, improving patient outcomes. Suction application via wall systems or portable digital devices enhances drainage efficacy, although careful regulation is needed to avoid complications such as re-expansion pulmonary edema or prolonged air leak. To prevent recurrent effusion, particularly due to malignancy, pleurodesis agents can be applied through the chest tube. In cases of non-expandable lung, maintaining a long-term chest drain may be the most appropriate approach and procedures such as the placement of an indwelling pleural catheter can significantly improve quality of life. Continued innovations and rigorous training ensure that chest tube insertion remains a cornerstone of effective pleural disease management. This review provides a comprehensive overview of the historical evolution and modern advancements in pleural drainage. By addressing both current technologies and procedural outcomes, it serves as a valuable resource for healthcare professionals aiming to optimize pleural disease management and patient care. Full article
(This article belongs to the Section Respiratory Medicine)
Show Figures

Figure 1

17 pages, 3143 KiB  
Article
Innovative Implantable Left Ventricular Assist Device—Performance under Various Resistances and Operating Frequency Conditions
by Ryszard Jasinski, Krzysztof Tesch, Leszek Dabrowski and Jan Rogowski
Appl. Sci. 2023, 13(13), 7785; https://doi.org/10.3390/app13137785 - 30 Jun 2023
Cited by 1 | Viewed by 1934
Abstract
This paper presents the operation of an innovative left ventricular assist device under various resistances and operating frequencies. The operating principle of the device is based on pulsatile blood flow, which is forced by a suction–discharge device pumping helium into a set of [...] Read more.
This paper presents the operation of an innovative left ventricular assist device under various resistances and operating frequencies. The operating principle of the device is based on pulsatile blood flow, which is forced by a suction–discharge device pumping helium into a set of intra-cardiac balloons. In this way, the ejection fraction of the left ventricle is increased, and the mitral valve is additionally occluded. What is more, the suction–discharge device is part of a portable pumping system that is synchronized with the heart cycle by monitoring the ECG signal. The device is implanted in a minimally invasive manner and is suitable for patients with stage D heart failure accompanied with residual mitral regurgitation. A model of the heart was built on the basis of a realistically reconstructed heart geometry and is part of an overall test stand that allows for realistic conditions in the heart of patients with end-stage heart failure to be reproduced. In the following sections, example measurements of the pressures in the heart chambers and balloons are shown, demonstrating that the device works correctly at least on a laboratory scale. The entire device, including the pumping system, is portable and powered by a set of lithium-ion batteries. From the measurements, it was observed, for example, that the flow rate varies with the frequency of the portable external balloon pumping system, up to 2.5 kg/min for 100 cycles/min at low flow resistance. As the flow resistance of the hydraulic system increases, the pressure in the heart chamber and aorta increases while the flow rate decreases. Full article
(This article belongs to the Section Biomedical Engineering)
Show Figures

Figure 1

12 pages, 951 KiB  
Hypothesis
Portable Medical Suction and Aspirator Devices: Are the Design and Performance Standards Relevant?
by Saketh R. Peri, Forhad Akhter, Robert A. De Lorenzo and R. Lyle Hood
Sensors 2022, 22(7), 2515; https://doi.org/10.3390/s22072515 - 25 Mar 2022
Cited by 6 | Viewed by 10730
Abstract
Airway clearance refers to the clearing of any airway blockage caused due to foreign objects such as mud, gravel, and biomaterials such as blood, vomit, or teeth fragments using the technology of choice, portable suction devices. Currently available devices are either too heavy [...] Read more.
Airway clearance refers to the clearing of any airway blockage caused due to foreign objects such as mud, gravel, and biomaterials such as blood, vomit, or teeth fragments using the technology of choice, portable suction devices. Currently available devices are either too heavy and bulky to be carried, or insufficiently powered to be useful despite being in accordance with the ISO 10079-1 standards. When applied to portable suction, the design and testing standards lack clinical relevancy, which is evidenced by how available portable suction devices are sparingly used in pre-hospital situations. Lack of clinical relevancy despite being in accordance with design/manufacturing standards arise due to little if any collaboration between those developing clinical standards and the bodies that maintain design and manufacturing standards. An updated set of standards is required that accurately reflects evidence-based requirements and specifications, which should promote valid, rational, and relevant engineering designs and manufacturing standards in consideration of the unique scenarios facing prehospital casualty care. This paper aims to critically review the existing standards for portable suction devices and propose modifications based on the evidence and requirements, especially for civilian prehospital and combat casualty care situations. Full article
Show Figures

Figure 1

13 pages, 2844 KiB  
Communication
A Portable Waterproof EEG Acquisition Device for Dolphins
by Yanchao Yu, Ni Li, Yan Li and Wentao Liu
Sensors 2021, 21(10), 3336; https://doi.org/10.3390/s21103336 - 11 May 2021
Cited by 10 | Viewed by 4241
Abstract
The acquisition and analysis of EEG signals of dolphins, a highly intelligent creature, has always been a focus of the research of bioelectric signals. Prevailing cable-connected devices cannot be adapted to data acquisition very well when dolphins are in motion. Therefore, this study [...] Read more.
The acquisition and analysis of EEG signals of dolphins, a highly intelligent creature, has always been a focus of the research of bioelectric signals. Prevailing cable-connected devices cannot be adapted to data acquisition very well when dolphins are in motion. Therefore, this study designs a novel, light-weighted, and portable EEG acquisition device aimed at relatively unrestricted EEG acquisition. An embedded main control board and an acquisition board were designed, and all modules are encapsulated in a 162 × 94 × 60 mm3 waterproof device box, which can be tied to the dolphin’s body by a silicon belt. The acquisition device uses customized suction cups with embedded electrodes and adopts a Bluetooth module for wireless communication with the ground station. The sampled signals are written to the memory card on board when the Bluetooth communication is blocked. A limited experiment was designed to verify the effectiveness of the device functionality onshore and underwater. However, more rigorous long-term tests on dolphins in various states with our device are expected in future to further prove its capability and study the movement-related artifacts. Full article
(This article belongs to the Special Issue EEG Sensors and Electrodes)
Show Figures

Figure 1

Back to TopTop