Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = porous grout body

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 6453 KiB  
Article
A Study on the Heterogeneity and Anisotropy of the Porous Grout Body Created in the Stabilization of a Methane Hydrate Reservoir through Grouting
by Yuchen Liu and Masanori Kurihara
Methane 2024, 3(2), 331-345; https://doi.org/10.3390/methane3020018 - 21 May 2024
Viewed by 1292
Abstract
To solve the sand problem during the depressurization of methane hydrate (MH), we proposed a method to build a porous grout body with sufficient permeability and strength around the wellbore through inhibitor pre-injection and grouting, and verified its effectiveness and potential in our [...] Read more.
To solve the sand problem during the depressurization of methane hydrate (MH), we proposed a method to build a porous grout body with sufficient permeability and strength around the wellbore through inhibitor pre-injection and grouting, and verified its effectiveness and potential in our previous research using artificial cores created with silica sand and alternative hydrates such as TBAB- hydrate and iso-butane hydrate. However, all of the artificial cores mentioned above were created with high homogeneity, injected, cured, and had their physical properties measured in the vertical direction, which differs from real reservoir conditions. To investigate the effects of grouting in a more realistic fluid flow, we conducted further experiments using horizontal 1D cores, 1D cubic models, and a 2D cross-sectional model mimicking the near wellbore. These experiments revealed that (1) the generated gas somewhat suppressed the effects of grouting as in the case of previous experiments, and (2) grouted reservoirs would be heterogenous and anisotropic due to the fluid densities and the distribution of grout particles and turbidite sediments, but sufficient permeability and satisfactory strength could still be attained. The above series of experiments demonstrated that our method has the potential to effectively produce actual MH, preventing sand problems even in heterogeneous and anisotropic grouted reservoirs. Full article
Show Figures

Figure 1

14 pages, 8295 KiB  
Article
Diffusion Model of Cement Slurry in Porous Media Considering Porosity Variation and Percolation Effect
by Bo Han, Xuemin Chen, Yanhui Pan, Chaojie Wang, Mingsheng Shi and Xuanxuan Chu
Appl. Sci. 2023, 13(3), 1919; https://doi.org/10.3390/app13031919 - 2 Feb 2023
Cited by 7 | Viewed by 1954
Abstract
The porosity of porous media is a key factor affecting cement slurry diffusion. In this paper, a theoretical model of cement slurry diffusion in porous media considering the variation of porosity is proposed. The model is validated through comparison with the experimental results [...] Read more.
The porosity of porous media is a key factor affecting cement slurry diffusion. In this paper, a theoretical model of cement slurry diffusion in porous media considering the variation of porosity is proposed. The model is validated through comparison with the experimental results in the literature. The influence of injection parameters (i.e., the water–cement ratio and the pore fractal dimension) on the porosity and strength of porous media is analyzed. The results indicate that: under the same pore fractal dimension, the porosity of the specimen increases gradually with the increase in diffusion distance, and the rate increases rapidly in the later stage. However, when the fractal dimension of porosity increases to 2.1, the porosity of the consolidated body after grouting does not change with the diffusion distance. The water–cement ratio also affects the porosity of the sample. At a distance below 1.0 m, the sample porosity is larger at a larger water–cement ratio of 1.5. When the distance is more than 1.0 m, the smaller the porosity decreases with increasing water–cement ratios. With the increase in distance, the compressive strength of the specimen first decreases slowly, and then rapidly from 90 kPa to 0 kPa. This is further verified by the pore variation law obtained by SEM. The model is applied to selecting grouting parameter design in road maintenance. The pavement deflection after grouting is effectively reduced, verifying the theoretical model’s applicability. Full article
(This article belongs to the Topic Pipeline and Underground Space Technology)
Show Figures

Figure 1

17 pages, 5694 KiB  
Article
Recycling of Waste Stone Powder in High Fluidity Grouting Materials for Geotechnical Engineering Reinforcement
by Xingquan Liu, Yangyang Rong, Xinming Chen, Xi Chen and Wenxiang Zhang
Buildings 2022, 12(11), 1887; https://doi.org/10.3390/buildings12111887 - 4 Nov 2022
Cited by 5 | Viewed by 2076
Abstract
Clay cement grout is frequently employed in geotechnical reinforcement projects. However, laboratory test revealed that clay cement slurry does not consolidate in a closed environment for an extended period of time, with cracks forming during the consolidation process under natural conditions, indicating that [...] Read more.
Clay cement grout is frequently employed in geotechnical reinforcement projects. However, laboratory test revealed that clay cement slurry does not consolidate in a closed environment for an extended period of time, with cracks forming during the consolidation process under natural conditions, indicating that the geotechnical reinforcement poses dangers. Stone powder is a powdery solid waste similar to clay materials. Stone powder particle surfaces provide an attachment point for cement reaction, which can speed up cement hydration, with the ability to substitute clay cement slurry. According to our findings, the bleeding rate of clay cement slurry is 14.80% at 290 mm fluidity, and that of the same mass ratio (1:3) as stone powder cement slurry is 11.09%. The bleeding rate is minimal, which promotes the creation of an integral structure after setting between the slurry and lose rock and soil. Mechanical test results show that the strength of the stone powder cement slurry hardened body is 1458 kPa, whereas the strength of the clay cement slurry hardened body is 436 kPa. Microstructural analysis shows that the stone powder cement hardened body has more hydration products and is porous than the clay cement hardened body. The hardened body of stone powder cement slurry has high strength and resistance to external loads, which can increase the bearing capacity and improve the geotechnical reinforcement effect. Full article
(This article belongs to the Special Issue Materials in Sustainable Buildings)
Show Figures

Figure 1

Back to TopTop