Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = porous PDMS flexible electronic composite films

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 8321 KiB  
Article
Flexible Piezoresistive Sensor with High Stability Based on GO@PDMS-PU Porous Structure
by Qingfang Zhang, Yi Li, Xingyu Wang, Xiaoyu Zhang, Shuyi Liu, Hengyi Yuan, Xiaodong Yang, Da Li, Zeping Jin, Yujian Zhang, Yutong Liu and Zhengmai Bian
Symmetry 2025, 17(5), 773; https://doi.org/10.3390/sym17050773 - 16 May 2025
Cited by 1 | Viewed by 756
Abstract
In recent years, flexible piezoresistive sensors based on polydimethylsiloxane (PDMS) matrix materials have developed rapidly, showing broad application prospects in fields such as human motion monitoring, electronic skin, and intelligent robotics. However, achieving a balance between structural durability and fabrication simplicity remains challenging. [...] Read more.
In recent years, flexible piezoresistive sensors based on polydimethylsiloxane (PDMS) matrix materials have developed rapidly, showing broad application prospects in fields such as human motion monitoring, electronic skin, and intelligent robotics. However, achieving a balance between structural durability and fabrication simplicity remains challenging. Traditional methods for preparing PDMS flexible substrates with high porosity and high stability often require complex, costly processes. Breaking through the constraints of conventional material systems, this study innovatively combines the high elasticity of polydimethylsiloxane (PDMS) with the stochastically distributed porous topology of a sponge-derived biotemplate through biomimetic templating replication technology, fabricating a heterogeneous composite system with an architecturally asymmetric spatial network. After 5000 loading cycles, uncoated samples experienced a thickness reduction of 7.0 mm, while PDMS-coated samples showed minimal thickness changes (2.0–3.0 mm), positively correlated with curing agent content (5:1 to 20:1). The 5:1 ratio sample demonstrated exceptional mechanical stability. As evidenced, the PDMS film-encapsulated architecturally asymmetric spatial network demonstrates superior stress dissipation efficacy, effectively mitigating stress concentration phenomena inherent to symmetric configurations that induce matrix fracture, thereby achieving optimal mechanical stability. Compared to the pre-test resistance distribution of 10–248 Ω, after 5000 cyclic loading cycles, the uncoated samples exhibited a narrowed resistance range of 10–50 Ω, while PDMS-coated samples maintained a broader resistance range (10–240 Ω) as the curing agent ratio increased (from 20:1 to 5:1), demonstrating that increasing the curing agent ratio helps maintain conductive network stability. The 5:1 ratio sample displayed the lowest resistance variation rate attenuation—only 3% after 5000 cycles (vs. 80% for uncoated samples)—and consistently minimal attenuation at all stages, validating superior electrical stability. Under 0–6 kPa pressure, the 5:1 ratio device maintained a linear sensitivity of 0.157 kPa−1, outperforming some existing works. Human motion monitoring experiments further confirmed its reliable signal output. Furthermore, the architecturally asymmetric spatial network of the device enables superior conformability to complex curvilinear geometries, leveraging its structural anisotropy to achieve seamless interfacial adaptation. By synergistically optimizing material composition and structural design, this study provides a novel technical method for developing highly durable flexible electronic devices. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

16 pages, 5661 KiB  
Article
A Study on the 3D Deformation Behavior of Porous PDMS Flexible Electronic Composite Films Stretched under Different Temperatures
by Cheng Chen, Ziyun Li, Yanlai Wang, Ze Zhang and Chunhua Ren
Materials 2023, 16(19), 6586; https://doi.org/10.3390/ma16196586 - 6 Oct 2023
Cited by 1 | Viewed by 1890
Abstract
Flexible electronic films need to be applied in different ambient temperatures. The porous substrate of the composite film enhances air permeability. The lifespan of these composite films is significantly affected by variations in temperature and substrate porosity. To explore the impact of temperature [...] Read more.
Flexible electronic films need to be applied in different ambient temperatures. The porous substrate of the composite film enhances air permeability. The lifespan of these composite films is significantly affected by variations in temperature and substrate porosity. To explore the impact of temperature and porosity on the performance of composite films, we developed a 3D deformation detection system utilizing the advanced three-dimensional digital image correlation (3D-DIC) method. This system enabled us to observe and analyze the 3D deformation behaviors of porous polydimethylsiloxane (PDMS) flexible composite films when they are subjected to uniaxial stretching at different temperatures. We proposed employing two parameters, namely the strain fluctuation coefficient (M) and off-plane displacement (w), to characterize the 3D deformation of the films. This holistic characterization of deformation through the combined utilization of parameters M and w held greater significance for composite films compared to the conventional practice of solely measuring mechanical properties like the elastic modulus. Through experimental analysis, we discovered that as the temperature increased, the M value of the film decreased while the w value increased for the same stretching distance. Furthermore, the porosity of the composite film depended on the doping mass ratio of PDMS to deionized water during the fabrication process. Specifically, when the ratio was set at 6:1, the composite film exhibited the smallest M value and w value, and the highest air permeability. Additionally, the 3D deformation behavior remained stable across different temperatures for this specific ratio. Moreover, our findings unveiled a remarkable association between the parameter w and the resistance value of the device. These findings provide valuable insights for optimizing the fabrication process of porous PDMS flexible electronic composite films. Full article
Show Figures

Figure 1

11 pages, 2565 KiB  
Article
Flexible and High Thermal Conductivity Composites Based on Graphite Nanoplates Paper Impregnated with Polydimethylsiloxane
by Daniele Battegazzore, Erica Fadda and Alberto Fina
J. Compos. Sci. 2021, 5(12), 309; https://doi.org/10.3390/jcs5120309 - 25 Nov 2021
Cited by 4 | Viewed by 2987
Abstract
This paper deals with the design, preparation, and characterization of conductive and flexible nanopapers based on graphite nanoplates (GNP) and polydimethylsiloxane (PDMS). Highly porous GNP nanopapers were first prepared by filtration from a GNP suspension in a solvent. Subsequently, PDMS impregnation was carried [...] Read more.
This paper deals with the design, preparation, and characterization of conductive and flexible nanopapers based on graphite nanoplates (GNP) and polydimethylsiloxane (PDMS). Highly porous GNP nanopapers were first prepared by filtration from a GNP suspension in a solvent. Subsequently, PDMS impregnation was carried out to obtain a composite material. By varying the concentration of the polymer solution and the deposition time, PDMS/GNP nanopapers were produced with a wide range of PDMS contents, porosities, and densities. Thermal diffusivity of the composite films (both in-plane and cross-plane) were measured and correlated with the structure of the nanopapers. Selected formulations were investigated in detail for their physical, thermal, and mechanical properties, exhibiting high flexibility and resistance to more than 50 repeated bendings, stiffness of up to 1.3 MPa, and thermal conductivity of up to 25 W/m∙K. Based on the properties obtained, the materials presented in this paper may find applications in modern lightweight and flexible electronic devices. Full article
(This article belongs to the Special Issue Carbon-Based Polymer Nanocomposites)
Show Figures

Figure 1

Back to TopTop