Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = polythiols

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5013 KB  
Article
Study on the Impact of Diluent Dosages on the Epoxy–Polythiol Self-Healing System
by Jiajia Sheng, Yang Guo, Xin Pang, Wenjing Ma, Hailu Yang, Yalin Liu, Linbing Wang and Shanglin Song
Polymers 2025, 17(4), 538; https://doi.org/10.3390/polym17040538 - 19 Feb 2025
Viewed by 830
Abstract
Self-healing technology is an effective method for enhancing the crack resistance of cement-based composites. This study focuses on the impact of the environmentally friendly diluent C12-14 alkyl glycidyl ether (AGE) on the performance of the epoxy resin–polythiol (rimethylolpropane tris (3-mercaptopropionate), TMPMP) self-healing system, [...] Read more.
Self-healing technology is an effective method for enhancing the crack resistance of cement-based composites. This study focuses on the impact of the environmentally friendly diluent C12-14 alkyl glycidyl ether (AGE) on the performance of the epoxy resin–polythiol (rimethylolpropane tris (3-mercaptopropionate), TMPMP) self-healing system, examining core fluidity, microcapsule properties, molecular dynamics, and the mechanical properties of cured products. The results show that as the AGE dosage increases, the particle size distribution of microcapsules becomes more concentrated, and the dispersion of particles is improved. Fourier-transform infrared spectroscopy confirms the successful encapsulation of E-51 and AGE. Microcapsules maintain structural integrity at high temperatures of 423.15 K. The onset thermal degradation temperature of the mixture shows an increasing trend with reduced AGE dosage. Specifically, TMPMP35% exhibits an onset degradation temperature of 370.95 K, while that of TMPMP20% is increased by 57.57% compared to TMPMP35%. Conversely, the initial and peak temperatures of the curing reaction decrease with less AGE incorporation. Thermodynamic analysis reveals that activation energy (E) initially increases and then decreases with increasing AGE. The frequency factor (A) correlates positively with the heating rate, indicating that the curing reaction’s reactivity is closely linked to heating rate. Minor variations in the reaction rate constant (k) indicate that the self-healing system maintains stable reactive activity at low temperatures. Notably, the AGE dosage significantly affects the rigidity of the self-healing system; the average Young’s modulus inversely correlates with AGE dosage, with the most substantial decrease of 5.88% occurring when AGE increases from 30% to 35%. This study offers insights into optimizing diluent ratios to balance self-healing and mechanical properties, essential for developing high-performance self-healing cement materials. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Figure 1

20 pages, 4366 KB  
Review
Chemistry of Polythiols and Their Industrial Applications
by Seung-Mo Hong, Oh Young Kim and Seok-Ho Hwang
Materials 2024, 17(6), 1343; https://doi.org/10.3390/ma17061343 - 14 Mar 2024
Cited by 7 | Viewed by 4464
Abstract
Thiols can react with readily available organic substrates under benign conditions, making them suitable for use in chemical, biological, physical, and materials and engineering research areas. In particular, the highly efficient thiol-based click reaction includes the reaction of radicals with electron-rich enes, Michael [...] Read more.
Thiols can react with readily available organic substrates under benign conditions, making them suitable for use in chemical, biological, physical, and materials and engineering research areas. In particular, the highly efficient thiol-based click reaction includes the reaction of radicals with electron-rich enes, Michael addition with electron-poor enes, carbonyl addition with isocyanate SN2 ring opening with epoxies, and SN2 nucleophilic substitution with halogens. This mini review provides insights into emerging venues for their industrial applications, especially for the applications of thiol-ene, thiol–isocyanate, and thiol–epoxy reactions, highlighting a brief chemistry of thiols as well as various approaches to polythiol synthesis. Full article
Show Figures

Figure 1

14 pages, 3315 KB  
Article
Performance Research and Formulation Optimization of High-Performance Local Insulation Spray Coating Materials
by Hechen Liu, Liwei Wei, Fengsheng Gao, Li Tang, Le Li, Zhanglin Sun, Yunpeng Liu and Peng Dong
Nanomaterials 2022, 12(19), 3344; https://doi.org/10.3390/nano12193344 - 25 Sep 2022
Cited by 7 | Viewed by 1901
Abstract
Bird pest control has become a major task for the operation and maintenance of distribution network lines. Epoxy resin that cures quickly at room temperature can be used to coat locations where birds frequently build their nests. However, epoxy resin has enormous internal [...] Read more.
Bird pest control has become a major task for the operation and maintenance of distribution network lines. Epoxy resin that cures quickly at room temperature can be used to coat locations where birds frequently build their nests. However, epoxy resin has enormous internal stress and is brittle, so it is essential to toughen it. In this paper, for a room temperature curing system composed of polyurethane-modified epoxy resin and a polythiol curing agent, three kinds of particles, i.e., Al2O3, SiO2, and Mg(OH)2, were used to modify a polyurethane modified epoxy resin. Orthogonal experiments were designed to study the effects of different fillers on the comprehensive properties of polyurethane-modified epoxy resins. The experimental results showed that there were not only independent effects of different kinds if particles on the resin, but also synergistic effects of multiple particles. Nanoparticles can reduce the defects introduced by microparticles to a certain extent and improve the mechanical and electrical properties of the resin. The overall performance of the resin was optimized when the amounts of SiO2, Al2O3, and Mg(OH)2 were 1.7%, 2.5%, and 7%, respectively. The tensile strength of the resin was increased by 70%, the elongation at a break by 67.53%, and the breakdown strength by 20.31% compared with before the addition of filler. The microscopic morphology and thermal properties of the resin before and after the addition of filler were also studied. Adding fillers caused more cracks to absorb part of the energy when the resin matrix was stressed and increased the rigidity of the resin matrix and the resin’s glass transition temperature (Tg) by 13.48 °C. Still, the temperature corresponding to the maximum rate of weight loss (Tmax) remained unchanged. Full article
Show Figures

Figure 1

20 pages, 2978 KB  
Article
Self-Healing Thiolated Pillar[5]arene Films Containing Moxifloxacin Suppress the Development of Bacterial Biofilms
by Dmitriy N. Shurpik, Yulia I. Aleksandrova, Olga A. Mostovaya, Viktoriya A. Nazmutdinova, Regina E. Tazieva, Fadis F. Murzakhanov, Marat R. Gafurov, Pavel V. Zelenikhin, Evgenia V. Subakaeva, Evgenia A. Sokolova, Alexander V. Gerasimov, Vadim V. Gorodov, Daut R. Islamov, Peter J. Cragg and Ivan I. Stoikov
Nanomaterials 2022, 12(9), 1604; https://doi.org/10.3390/nano12091604 - 9 May 2022
Cited by 16 | Viewed by 3275
Abstract
Polymer self-healing films containing fragments of pillar[5]arene were obtained for the first time using thiol/disulfide redox cross-linking. These films were characterized by thermogravimetric analysis and differential scanning calorimetry, FTIR spectroscopy, and electron microscopy. The films demonstrated the ability to self-heal through the action [...] Read more.
Polymer self-healing films containing fragments of pillar[5]arene were obtained for the first time using thiol/disulfide redox cross-linking. These films were characterized by thermogravimetric analysis and differential scanning calorimetry, FTIR spectroscopy, and electron microscopy. The films demonstrated the ability to self-heal through the action of atmospheric oxygen. Using UV–vis, 2D 1H-1H NOESY, and DOSY NMR spectroscopy, the pillar[5]arene was shown to form complexes with the antimicrobial drug moxifloxacin in a 2:1 composition (logK11 = 2.14 and logK12 = 6.20). Films containing moxifloxacin effectively reduced Staphylococcus aureus and Klebsiella pneumoniae biofilms formation on adhesive surfaces. Full article
(This article belongs to the Special Issue Functional Nanomaterials Based on Self-Assembly)
Show Figures

Graphical abstract

12 pages, 1876 KB  
Article
Synthesis and In Vitro Assessment of pH-Sensitive Human Serum Albumin Conjugates of Pirarubicin
by Kenji Tsukigawa, Shuhei Imoto, Keishi Yamasaki, Koji Nishi, Toshihiko Tsutsumi, Shoko Yokoyama, Yu Ishima and Masaki Otagiri
Pharmaceuticals 2021, 14(1), 22; https://doi.org/10.3390/ph14010022 - 30 Dec 2020
Cited by 5 | Viewed by 3689
Abstract
In a previous study, we reported on the development of a synthetic polymer conjugate of pirarubicin (THP) that was formed via an acid-labile hydrazone bond between the polymer and the THP. However, the synthetic polymer itself was non-biodegradable, which could lead to unexpected [...] Read more.
In a previous study, we reported on the development of a synthetic polymer conjugate of pirarubicin (THP) that was formed via an acid-labile hydrazone bond between the polymer and the THP. However, the synthetic polymer itself was non-biodegradable, which could lead to unexpected adverse effects. Human serum albumin (HSA), which has a high biocompatibility and good biodegradability, is also a potent carrier for delivering antitumor drugs. The objective of this study was to develop pH-sensitive HSA conjugates of THP (HSA-THP), and investigate the release of THP and the cytotoxicity under acidic conditions in vitro for further clinical development. HSA-THP was synthesized by conjugating maleimide hydrazone derivatives of THP with poly-thiolated HSA using 2-iminothiolane, via a thiol-maleimide coupling reaction. We synthesized two types of HSA-THP that contained different amounts of THP (HSA-THP2 and HSA-THP4). Free THP was released from both of the HSA conjugates more rapidly at an acidic pH, and the rates of release for HSA-THP2 and HSA-THP4 were similar. Moreover, both HSA-THPs exhibited a higher cytotoxicity at acidic pH than at neutral pH, which is consistent with the effective liberation of free THP under acidic conditions. These findings suggest that these types of HSA-THPs are promising candidates for further development. Full article
Show Figures

Graphical abstract

Back to TopTop