Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = polynitro heterocyclic ligands

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 3537 KiB  
Article
High-Density Energetic Metal–Organic Frameworks Based on the 5,5′-Dinitro-2H,2′H-3,3′-bi-1,2,4-triazole
by Yalu Dong, Panpan Peng, Baoping Hu, Hui Su, Shenghua Li and Siping Pang
Molecules 2017, 22(7), 1068; https://doi.org/10.3390/molecules22071068 - 26 Jun 2017
Cited by 26 | Viewed by 6689
Abstract
High-energy metal–organic frameworks (MOFs) based on nitrogen-rich ligands are an emerging class of explosives, and density is one of the positive factors that can influence the performance of energetic materials. Thus, it is important to design and synthesize high-density energetic MOFs. In the [...] Read more.
High-energy metal–organic frameworks (MOFs) based on nitrogen-rich ligands are an emerging class of explosives, and density is one of the positive factors that can influence the performance of energetic materials. Thus, it is important to design and synthesize high-density energetic MOFs. In the present work, hydrothermal reactions of Cu(II) with the rigid polynitro heterocyclic ligands 5,5′-dinitro-2H,2′H-3,3′-bi-1,2,4-triazole (DNBT) and 5,5′-dinitro-3,3′-bis-1,2,4-triazole-1-diol (DNBTO) gave two high-density MOFs: [Cu(DNBT)(ATRZ)3]n (1) and [Cu(DNBTO)(ATRZ)2(H2O)2]n (2), where ATRZ represents 4,4′-azo-1,2,4-triazole. The structures were characterized by infrared spectroscopy, elemental analysis, ultraviolet-visible (UV) absorption spectroscopy and single-crystal X-ray diffraction. Their thermal stabilities were also determined by thermogravimetric/differential scanning calorimetry analysis (TG/DSC). The results revealed that complex 1 has a two-dimensional porous framework that possesses the most stable chair conformations (like cyclohexane), whereas complex 2 has a one-dimensional polymeric structure. Compared with previously reported MOFs based on copper ions, the complexes have higher density (ρ = 1.93 g cm−3 for complex 1 and ρ = 1.96 g cm−3 for complex 2) and high thermal stability (decomposition temperatures of 323 °C for complex 1 and 333.3 °C for complex 2), especially because of the introduction of an N–O bond in complex 2. We anticipate that these two complexes would be potential high-energy density materials. Full article
(This article belongs to the Section Organometallic Chemistry)
Show Figures

Graphical abstract

Back to TopTop