Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = polyhyroxybutyrate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2894 KiB  
Article
Characterization and Process Optimization for Enhanced Production of Polyhydroxybutyrate (PHB)-Based Biodegradable Polymer from Bacillus flexus Isolated from Municipal Solid Waste Landfill Site
by Mohd Adnan, Arif Jamal Siddiqui, Syed Amir Ashraf, Mejdi Snoussi, Riadh Badraoui, Angum M. M. Ibrahim, Mousa Alreshidi, Manojkumar Sachidanandan and Mitesh Patel
Polymers 2023, 15(6), 1407; https://doi.org/10.3390/polym15061407 - 12 Mar 2023
Cited by 19 | Viewed by 6677
Abstract
In recent years, there has been a growing interest in bio-based degradable plastics as an alternative to synthetic plastic. Polyhyroxybutyrate (PHB) is a macromolecule produced by bacteria as a part of their metabolism. Bacteria accumulate them as reserve materials when growing under different [...] Read more.
In recent years, there has been a growing interest in bio-based degradable plastics as an alternative to synthetic plastic. Polyhyroxybutyrate (PHB) is a macromolecule produced by bacteria as a part of their metabolism. Bacteria accumulate them as reserve materials when growing under different stress conditions. PHBs can be selected as alternatives for the production of biodegradable plastics because of their fast degradation properties when exposed to natural environmental conditions. Hence, the present study was undertaken in order to isolate the potential PHB-producing bacteria isolated from the municipal solid waste landfill site soil samples collected from the Ha’il region of Saudi Arabia to assess the production of PHB using agro-residues as a carbon source and to evaluate the growth of PHB production. In order to screen the isolates for producing PHB, a dye-based procedure was initially employed. Based on the 16S rRNA analysis of the isolates, Bacillus flexus (B. flexus) accumulated the highest amount of PHB of all the isolates. By using a UV–Vis spectrophotometer and Fourier-transform infrared spectrophotometer (FT-IR), in which a sharp absorption band at 1721.93 cm−1 (C=O stretching of ester), 1273.23 cm−1 (–CH group), multiple bands between 1000 and 1300 cm−1 (stretching of the C–O bond), 2939.53 cm−1 (–CH3 stretching), 2880.39 cm−1 (–CH2 stretching) and 3510.02 cm−1 (terminal –OH group), the extracted polymer was characterized and confirmed its structure as PHB. The highest PHB production by B. flexus was obtained after 48 h of incubation (3.9 g/L) at pH 7.0 (3.7 g/L), 35 °C (3.5 g/L) with glucose (4.1 g/L) and peptone (3.4 g/L) as carbon and nitrogen sources, respectively. As a result of the use of various cheap agricultural wastes, such as rice bran, barley bran, wheat bran, orange peel and banana peel as carbon sources, the strain was found to be capable of accumulating PHB. Using response surface methodology (RSM) for optimization of PHB synthesis using a Box–Behnken design (BBD) proved to be highly effective in increasing the polymer yield of the synthesis. With the optimum conditions obtained from RSM, PHB content can be increased by approximately 1.3-fold when compared to an unoptimized medium, resulting in a significant reduction in production costs. Thus, isolate B. flexus is a highly promising candidate for the production of industrial-size quantities of PHB from agricultural wastes and is capable of removing the environmental concerns associated with synthetic plastics from the industrial production process. Moreover, the successful production of bioplastics using a microbial culture provides a promising avenue for the large-scale production of biodegradable and renewable plastics with potential applications in various industries, including packaging, agriculture and medicine. Full article
Show Figures

Graphical abstract

18 pages, 2580 KiB  
Article
Polyhydroxybutyrate (PHB)-Based Biodegradable Polymer from Agromyces indicus: Enhanced Production, Characterization, and Optimization
by Mohd Adnan, Arif Jamal Siddiqui, Syed Amir Ashraf, Mejdi Snoussi, Riadh Badraoui, Mousa Alreshidi, Abdelbaset Mohamed Elasbali, Waleed Abu Al-Soud, Salem Hussain Alharethi, Manojkumar Sachidanandan and Mitesh Patel
Polymers 2022, 14(19), 3982; https://doi.org/10.3390/polym14193982 - 23 Sep 2022
Cited by 33 | Viewed by 7372
Abstract
Recently, there has been significant interest in bio-based degradable plastics owing to their potential as a green and sustainable alternative to synthetic plastics due to their biodegradable properties. Polyhydroxybutyrate (PHB) is a biodegradable polymer that is produced by bacteria and archaea as carbon [...] Read more.
Recently, there has been significant interest in bio-based degradable plastics owing to their potential as a green and sustainable alternative to synthetic plastics due to their biodegradable properties. Polyhydroxybutyrate (PHB) is a biodegradable polymer that is produced by bacteria and archaea as carbon and energy reserves. Due to its rapid degradation in natural environments, it can be considered a biodegradable plastic alternative. In the present study, a dye-based procedure was used to screen PHB-producing bacteria isolated from mangrove soil samples. Among the seven isolates, Agromyces indicus (A. indicus), identified by means of 16S rRNA analysis, accumulated the highest amount of PHB. The extracted polymer was characterized by a UV–Vis spectrophotometer, Fourier-transform infrared (FTIR) spectroscopy, and for the presence of the phbB gene, which confirmed the structure of the polymer as PHB. The maximum PHB production by A. indicus was achieved after 96 h of incubation at a pH of 8.0 and 35 °C in the presence of 2% NaCl, with glucose and peptone as the carbon and nitrogen sources, respectively. The strain was found to be capable of accumulating PHB when various cheap agricultural wastes, such as rice, barley, corn, and wheat bran, were used as the carbon sources. The response surface methodology (RSM) through the central composite design (CCD) for optimizing the PHB synthesis was found to be highly efficient at augmenting the polymer yields. As a result of the optimum conditions obtained from the RSM, this strain can increase the PHB content by approximately 1.4-fold when compared with an unoptimized medium, which would substantially lower the production cost. Therefore, the isolate A. indicus strain B2 may be regarded as one of the best candidates for the industrial production of PHB from agricultural wastes, and it can remove the environmental concerns associated with synthetic plastic. Full article
Show Figures

Figure 1

Back to TopTop