Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = polyamide 56 fabric

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 7215 KB  
Article
Insight into the Dyeability of Bio-Based Polyamide 56 by Natural Dyes
by Chenchen Sun, Jiaqing Wu and Ying Wang
Chemistry 2025, 7(3), 95; https://doi.org/10.3390/chemistry7030095 - 9 Jun 2025
Viewed by 834
Abstract
Bio-based polyamide 56 (PA56) is a new sustainable material in the polyamide family. In this study, dyes suitable for PA56 fibers were experimentally screened from natural plants rich in pigments. The results showed that the preferred natural dyes for PA56 fabric are turmeric [...] Read more.
Bio-based polyamide 56 (PA56) is a new sustainable material in the polyamide family. In this study, dyes suitable for PA56 fibers were experimentally screened from natural plants rich in pigments. The results showed that the preferred natural dyes for PA56 fabric are turmeric for a yellow hue, madder for a red hue, catechu for a brown hue, and indigo for a blue hue. A green hue was achieved by the two-bath dyeing method using indigo and turmeric, respectively. For a dyability comparison with conventional PA6 and PA66, PA56, PA6, and PA66 fabrics were woven under identical conditions and dyed with turmeric, madder, catechu, and commercial indigo extracts. PA56 fabric exhibited the best dye uptake and the fastest dyeing rate (PA56 > PA6 > PA66). The reason for the excellent dyeability of PA56 fibers was analyzed in terms of differential scanning calorimetry measurement and molecular dynamics simulations. The results showed that the lowest crystallinity was exhibited by PA56 (PA56 < PA6 < PA66); in addition, PA56 displayed the largest fractional free volume (PA56 > PA6 > PA66). These structural characteristics contribute to the excellent dyeability of PA56 fibers. Therefore, PA56 fibers are promising materials, as they are derived from a sustainable source and have superior dyeing properties compared to PA6 and PA66 fibers. Full article
(This article belongs to the Topic Green and Sustainable Chemical Products and Processes)
Show Figures

Figure 1

20 pages, 16630 KB  
Article
Three-Dimensional Cross-Linking Network Coating for the Flame Retardant of Bio-Based Polyamide 56 Fabric by Weak Bonds
by Yunlong Cui, Yu Liu, Dongxu Gu, Hongyu Zhu, Meihui Wang, Mengjie Dong, Yafei Guo, Hongyu Sun, Jianyuan Hao and Xinmin Hao
Polymers 2024, 16(8), 1044; https://doi.org/10.3390/polym16081044 - 10 Apr 2024
Cited by 2 | Viewed by 1899
Abstract
Weak bonds usually make macromolecules stronger; therefore, they are often used to enhance the mechanical strength of polymers. Not enough studies have been reported on the use of weak bonds in flame retardants. A water-soluble polyelectrolyte complex composed of polyethyleneimine (PEI), sodium tripolyphosphate [...] Read more.
Weak bonds usually make macromolecules stronger; therefore, they are often used to enhance the mechanical strength of polymers. Not enough studies have been reported on the use of weak bonds in flame retardants. A water-soluble polyelectrolyte complex composed of polyethyleneimine (PEI), sodium tripolyphosphate (STPP) and melamine (MEL) was designed and utilized to treat bio-based polyamide 56 (PA56) by a simple three-step process. It was found that weak bonds cross-linked the three compounds to a 3D network structure with MEL on the surface of the coating under mild conditions. The thermal stability and flame retardancy of PA56 fabrics were improved by the controlled coating without losing their mechanical properties. After washing 50 times, PA56 still kept good flame retardancy. The cross-linking network structure of the flame retardant enhanced both the thermal stability and durability of the fabric. STPP acted as a catalyst for the breakage of the PA56 molecular chain, PEI facilitated the char formation and MEL released non-combustible gases. The synergistic effect of all compounds was exploited by using weak bonds. This simple method of developing structures with 3D cross-linking using weak bonds provides a new strategy for the preparation of low-cost and environmentally friendly flame retardants. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

Back to TopTop