Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = poly(3-hydroxybutyrate), N,N-dibutylundecenoylamide plasticizer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3691 KB  
Article
Development of Polyhydroxybutyrate-Based Packaging Films and Methods to Their Ultrasonic Welding
by Viktoriia Talaniuk, Marcin Godzierz, Alina Vashchuk, Maksym Iurhenko, Paweł Chaber, Wanda Sikorska, Anastasiia Kobyliukh, Valeriy Demchenko, Sergiy Rogalsky, Urszula Szeluga and Grażyna Adamus
Materials 2023, 16(20), 6617; https://doi.org/10.3390/ma16206617 - 10 Oct 2023
Cited by 2 | Viewed by 1901
Abstract
This study developed a technical task associated with the formation of welded joints based on biodegradable polymers and their subsequent physicochemical characterization. The primary objective was to establish the effect of the welding process and modification of natural poly(3-hydroxybutyrate) (PHB) with N,N-dibutylundecenoylamide (DBUA) [...] Read more.
This study developed a technical task associated with the formation of welded joints based on biodegradable polymers and their subsequent physicochemical characterization. The primary objective was to establish the effect of the welding process and modification of natural poly(3-hydroxybutyrate) (PHB) with N,N-dibutylundecenoylamide (DBUA) as a plasticizing agent on the structure and properties of PHB-based biopolymer materials as well as the process and structure of welded joints formation using ultrasonic welding technique. The weldability of biodegradable layers based on PHB and PHB/DBUA mixture was ultrasonically welded and optimized using a standard Branson press-type installation. The effect of the DBUA plasticizer and welding process on the structure of PHB-based biodegradable material was investigated using scanning electron microscopy, X-ray diffraction, FT-IR spectroscopy, differential scanning calorimetry, and thermomechanical analysis. The results confirmed that the DBUA acted as an effective plasticizer of PHB, contributing to lower crystallinity of the PHB/DBUA mixture (63%) in relation to the crystallinity degree of pure PHB film (69%). Ultrasonic welding resulted in an additional increase (approximately 8.5%) in the degree of crystallinity in the PHB/DBUA in relation to the initial PHB/DBUA mixture. The significant shift toward lower temperatures of the crystallization and melting peaks of PHB modified with DBUA were observed using DSC concerning pure PHB. The melt crystallization process of PHB was affected by welding treatment, and a shift toward higher temperature was observed compared with the unwelded PHB/DBUA sample. The butt-welded joints of biodegradable PHB/DBUA materials made using the ultrasonic method tested for tensile strength have damaged the area immediately outside the joining surface. Full article
(This article belongs to the Special Issue Advances in Bio-Based Polymers)
Show Figures

Figure 1

Back to TopTop