Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = polish group topologies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2195 KiB  
Article
Fabrication of Microstructured Surface Topologies for the Promotion of Marine Bacteria Biofilm
by Ariadni Droumpali, Jörg Hübner, Lone Gram and Rafael Taboryski
Micromachines 2021, 12(8), 926; https://doi.org/10.3390/mi12080926 - 3 Aug 2021
Cited by 2 | Viewed by 3263
Abstract
Several marine bacteria of the Roseobacter group can inhibit other microorganisms and are especially antagonistic when growing in biofilms. This aptitude to naturally compete with other bacteria can reduce the need for antibiotics in large-scale aquaculture units, provided that their culture can be [...] Read more.
Several marine bacteria of the Roseobacter group can inhibit other microorganisms and are especially antagonistic when growing in biofilms. This aptitude to naturally compete with other bacteria can reduce the need for antibiotics in large-scale aquaculture units, provided that their culture can be promoted and controlled. Micropatterned surfaces may facilitate and promote the biofilm formation of species from the Roseobacter group, due to the increased contact between the cells and the surface material. Our research goal is to fabricate biofilm-optimal micropatterned surfaces and investigate the relevant length scales for surface topographies that can promote the growth and biofilm formation of the Roseobacter group of bacteria. In a preliminary study, silicon surfaces comprising arrays of pillars and pits with different periodicities, diameters, and depths were produced by UV lithography and deep reactive ion etching (DRIE) on polished silicon wafers. The resulting surface microscale topologies were characterized via optical profilometry and scanning electron microscopy (SEM). Screening of the bacterial biofilm on the patterned surfaces was performed using green fluorescent staining (SYBR green I) and confocal laser scanning microscopy (CLSM). Our results indicate that there is a correlation between the surface morphology and the spatial organization of the bacterial biofilm. Full article
(This article belongs to the Special Issue Selected Papers from ICMA2021)
Show Figures

Figure 1

1 pages, 157 KiB  
Abstract
Fabrication of Micro-Structured Surface Topologies for the Promotion of Marine Bacteria Biofilm
by Ariadni Droumpali, Jörg Hübner, Lone Gram and Rafael Taboryski
Eng. Proc. 2021, 4(1), 7; https://doi.org/10.3390/Micromachines2021-09579 - 16 Apr 2021
Viewed by 982
Abstract
Several marine bacteria of the Roseobacter group can inhibit other microorganisms and are especially antagonistic when growing in biofilms. This aptitude to naturally compete with other bacteria can reduce the need for antibiotics in large scale aquaculture units, providing that their culture can [...] Read more.
Several marine bacteria of the Roseobacter group can inhibit other microorganisms and are especially antagonistic when growing in biofilms. This aptitude to naturally compete with other bacteria can reduce the need for antibiotics in large scale aquaculture units, providing that their culture can be promoted and controlled. Micropatterned surfaces may facilitate and promote the biofilm formation of species from the Roseobacter group, due to the increased contact between the cells and the surface material. Our research goal is to fabricate a biofilm with optimal micro patterned surfaces and investigate the relevant length scales for surface topographies, as well as the surface chemistry, which can promote growth and biofilm formation of the Roseobacter group. In a preliminary study, silicon surfaces comprising arrays of pillars and pits with different periodicities, diameters and depths were produced by UV lithography and deep reactive ion etching (DRIE) on single-side polished silicon wafers. The resulting surface microscale topologies were characterized using optical profilometry and scanning electron microscopy (SEM). Screening of the bacterial biofilm on the patterned surfaces was performed using green fluorescent staining (SYBR green I) and confocal laser scanning microscopy (CLSM). Different series of experiments were conducted by changing several parameters, such as growth time, shear stress corresponding to particular revolution per minute (rpm) and growth media. Preliminary results indicate that there is a correlation between the surface morphology, and the spatial organization of the bacterial biofilm. Our results indicate that further investigation leading to optimization of surface topology and surface chemistry will allow us to microfabricate polymer material surfaces where biofilm colonization is enhanced. Such surfaces will enable the introduction of beneficial bacteria in a variety of industrial processes, including aquaculture. Full article
(This article belongs to the Proceedings of The 1st International Conference on Micromachines and Applications)
4 pages, 220 KiB  
Article
No Uncountable Polish Group Can be a Right-Angled Artin Group
by Gianluca Paolini and Saharon Shelah
Axioms 2017, 6(2), 13; https://doi.org/10.3390/axioms6020013 - 11 May 2017
Cited by 3 | Viewed by 3971
Abstract
We prove that if G is a Polish group and A a group admitting a system of generators whose associated length function satisfies: (i) if 0 < k < ω , then [...] Read more.
We prove that if G is a Polish group and A a group admitting a system of generators whose associated length function satisfies: (i) if 0 < k < ω , then l g ( x ) l g ( x k ) ; (ii) if l g ( y ) < k < ω and x k = y , then x = e , then there exists a subgroup G * of G of size b (the bounding number) such that G * is not embeddable in A. In particular, we prove that the automorphism group of a countable structure cannot be an uncountable right-angled Artin group. This generalizes analogous results for free and free abelian uncountable groups. Full article
(This article belongs to the Collection Topological Groups)
Back to TopTop